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      San Francisco median home prices hit all-time high in April
      2016

      
      Last week we drilled down into 
      the recent decline in SF home prices. Instead of a market
      downturn, we found that the decline was isolated to homes and
      especially condos sold above $3M. Below $3M, prices continued to
      increase and competition was fierce.
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      April 2016 - Back to
      normal/crazy

      At the time of publication, there were 394 single-family homes
      and condos reported sold to the San Francisco MLS in April 2016.
      Their combined median sales price was $1,285,000, which is a
      new all-time high. This was 23% higher than the previous
      month and 6% higher than April 2015. Sales volume remains low: 394
      sold vs 492 in the same period last year, a 23% YOY decline. The
      previous high of $1.26M was in May 2015.
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      	Single-family homes (60% of total sales) are selling way above
      asking at all price points.

      	
      Home and condos below $1M (30% of total sales) are increasing
      in price/sqft. Above $1M, home values are declining on a price/sqft
      basis.

      	Luxury condo market is weakest with condos over $3M (2% of
      total sales) going for 2.7% below their asking price on average.
      There's very low volume in that range: only 8 condos for over $3M
      in April.

      

      Interesting times! We'll continue to closely monitor the SF
      markets for any signs of change.

      Data sources: San Francisco
      MLS (dataset available by request). Median home
      prices prior to April 2016 via Paragon RE. Thanks
      to Patrick Carlisle from Paragon for confirming these findings.

      

    

  
    

    
      SpaceX lands rocket at sea second time after satellite
      launch

      
      
      [image: SpaceX lands rocket at sea 2nd time after satellite launch]

      This photo provided by SpaceX shows the first stage of the
      company's Falcon rocket after it landed on a platform in the
      Atlantic Ocean just off the Florida coast on Friday, May 6, 2016,
      after launching a Japanese communications satellite. (SpaceX via
      AP)
      For the second month in a row, the aerospace upstart SpaceX
      landed a rocket on an ocean platform early Friday, this time
      following the successful launch of a Japanese communications
      satellite.

      

      

      A live webcast showed the first-stage booster touching down
      vertically in the pre-dawn darkness atop a barge in the Atlantic,
      just off the Florida coast. The same thing occurred April 8 during
      a space station supply run for NASA. That was the first successful
      landing at sea for SpaceX, which expects to start reusing its
      unmanned Falcon rockets as early as this summer to save money and
      lower costs.

      Because of the high altitude needed for this mission, SpaceX did
      not expect a successful landing. But it was wrong. As the launch
      commentator happily declared, "The Falcon has landed."

      SpaceX founder and chief executive Elon Musk was even more
      exuberant. "Woohoo!!" he exclaimed in bold letters via Twitter.

      "May need to increase size of rocket storage hangar," he added
      in a tweet.

      Musk said this was a three-engine burn for the booster's return,
      "so triple deceleration from the last flight." Before liftoff from
      Cape Canaveral, Florida, he put the chances of a successful
      touchdown at "maybe even" because the rocket was coming in faster
      and hotter than last time.
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      This photo provided by SpaceX shows the first stage of the
      company's Falcon rocket after it landed on a platform in the
      Atlantic Ocean just off the Florida coast on Friday, May 6, 2016,
      after launching a Japanese communications satellite. (SpaceX via
      AP)
      Musk contends rocket reusability is key to shaving launch costs
      and making space more accessible.

      SpaceX is the only company to recover a rocket following an
      orbital launch. It achieved its first booster landing—on solid
      ground at Cape Canaveral Air Force Station—in December. A landing
      at sea proved more elusive and required several tries.

      Blue Origin, led by another wealthy high-tech entrepreneur, Jeff
      Bezos of Amazon.com, has landed and even reflown its booster
      rockets, but those did not put anything into orbit.
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      A SpaceX Falcon 9 rocket lights up the sky during a launch from the
      Cape Canaveral Air Force Station's Launch complex 40 early Friday
      morning, May 6, 2016, in Fla . Aboard is the JCSAT-14
      communications satellite. SpaceX has done it again. …more
      Following last month's landing, Musk said he plans to fly that
      booster again, possibly as soon as June. The first recovered
      booster, from December, will grace the entrance of SpaceX
      headquarters in Hawthorne, California.

      Already in the delivery business for NASA, SpaceX hopes to start
      transporting U.S. astronauts to the International Space Station by
      the end of next year in the company's next-generation Dragon
      capsules. But its ultimate goal is Mars.

      In a groundbreaking announcement last week, Musk said his
      company will attempt to send a Red Dragon to Mars in 2018—and
      actually land on the red planet. His ambition is to establish a
      city on Mars.

      He also runs Tesla Motors, the electric car company.
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      SpaceX's Falcon 9 rocket launches the JCSAT-14 communications
      satellite at Cape Canaveral, Fla, early Friday, May 6, 2016. The
      Falcon 9 first stage also landed on a droneship while the second
      stage continued on, delivering the spacecraft to …more
      
      [image: SpaceX lands rocket at sea 2nd time after satellite launch]

      SpaceX's Falcon 9 rocket launches the JCSAT-14 communications
      satellite at Cape Canaveral, Fla, early Friday, May 6, 2016. The
      Falcon 9 first stage also landed on a droneship while the second
      stage continued on, delivering the spacecraft to …more
      [image: ] Explore further: 
      SpaceX to launch rocket Dec 19, six months after blast

      More information: SpaceX: www.spacex.com/


    

  
    

    
      Introducing lambda-comments · Jim Pick

      
      I’d like to introduce a new
      open-source project which I hope will be useful to people who would
      like to add comments to their blog or website.

      The project is called “lambda-comments”, and
      you can find the project page on
      GitHub.

      
      Static Site Generators

      There are many ways to build a blog. WordPress is by far the most popular
      open-source blogging software. Many people choose to not build
      their own blog and instead publish their writings on a platform
      such as Medium.

      For those that like to maintain control, an increasingly popular
      alternative is to use a 
      static site generator such as Jekyll, and host the site for free using
      a service such as GitHub
      Pages.

      This blog is currently being built using a Go-based static site generator called
      Hugo and it is hosted on Aerobatic.

      Check out StaticGen for
      a nice list of static site generator projects.

      As for hosting companies, you have a lot of easy and cheap
      options. 
      Amazon S3 is inexpensive and gives you a lot of control.
      Surge is a popular service (run by
      friends of mine) and they’ve got a great CLI tool that makes
      publishing almost instantaneous. People think of Firebase from Google as a real-time
      database service, but they’ve got a great static website publishing
      system as well. Netlify
      and Aerobatic are advanced
      solutions that can automatically rebuild your static site on their
      servers, separate assets out onto a global CDN, and they offer lots
      of other nice features that web consulting shops and agencies would
      find useful.

      If you are using WordPress,
      there’s a database always running behind the scenes and it has
      support for self-hosted comments built-in.

      Static sites, on the other hand, are not rendered from a
      database. So many blogs hosted on static sites do not have
      comments. Often this is just a conscious decision by the blog
      author so that they don’t have to deal with malicious
      user-submitted content.

      Many bloggers decide to have conversations off of their blog –
      and in social media instead. There are usually more people
      interacting with Twitter, Facebook, LinkedIn or Hacker News at any particular
      moment. Social media conversations tend to get lost in the noise
      over the time, whereas blog comments will always be discoverable
      via search engines for as long as the blog post exists.

      Most static sites that do have comments use a hosted service.
      Disqus is the
      most popular hosted service, but there are many others. Disqus
      is free and it has many nice features. It’s easy to integrate into
      a blog – simply drop their html snippet into the right template,
      and their JavaScript loads and shows the comments and comment form
      on your pages.

      However, not everybody wants to use a hosted service provided by
      a third-party. Privacy and data sharing are important issues on the
      modern Internet. If you haven’t tried out Brett Gaylor’s “Do Not Track” online
      documentary, do it now!

      Hosted commenting services do have a lot of features, and many
      offer some degree of configurability and customization. But no
      proprietary service can offer the amount of flexibility that a
      self-hosted open-source solution can provide.

      Self-hosting means that the data is on your own servers (or
      servers you rent in the cloud). You don’t have to worry about the
      hosted service being “sunsetted”, the “platform risk” of the
      service being radically changed with short notice, or having the
      formerly free service converted into a paid service when the VC
      money dries up. If you compare, you’ll find that the “terms of service” for a
      cloud provider such as AWS are quite different from the terms for a
      special-purpose 
      comment hosting service. (No, I haven’t read them)

      For the truly paranoid, the national security spooks in various
      countries are going to focus less attention on small self-hosted
      systems than on the big services they can easily subpoena for bulk
      data collection. Dictatorships will find that it’s more effort to
      censor a bunch of individual websites and APIs than to just block
      the big ones that are ‘inconvenient’. And if you are truly trying
      to hide something from somebody, there’s nothing stopping you from
      running your self-hosted comments on Tor .

      If you Google for ‘open
      source disqus alternatives’, you’ll find some great-looking
      projects such as Isso and
      HashOver. They
      can be installed on a Linux virtual machine running in the cloud -
      a $5/month virtual machine should do the trick.

      But $5/month is still a pretty pricey solution for comments on a
      static site, which might be hosted entirely for free otherwise.
      Plus, there are servers to maintain, and system administration
      skills to master, and security patches to continually apply. Take
      this blog for example, I typically only write a post every month or
      so, and I don’t expect that there’s going to be a lot of people
      leaving comments. Ideally, the cost per comment should be low.

      Last year, Amazon announced AWS Lambda, which
      allows you to host code in the cloud that can run in response to
      events. If the code only needs to run for 30 seconds to respond to
      an event, then you only have to pay for 30 seconds of compute time.
      It’s a perfect model for a self-hosted blog comment system.

      So that’s what I am introducing today. lambda-comments is
      an open-source self-hosted blog comment system that can be deployed
      to Amazon, and it hopefully will cost less than a dollar a month to
      operate.

      Spam and
      Abuse

      I’m old enough to remember when spam and abuse was not a big
      problem on the Internet. However, these days, it’s an awful
      mess.

      In order to keep the initial implementation simple and to
      encourage people to leave comments without a lot of friction,
      lambda-comments allows for anonymous commenting. It also optionally
      allows people to leave their name and to link to their own or other
      websites.

      In this very first implementation, there is no attempt to try to
      verify that people are who they say they are, so it is wide open to
      the abuse vector of somebody attempting to impersonate somebody
      else. For a lighter traffic “gentle” community, this is probably
      not a problem, and can be easily policed. I’m hoping this blog fits
      that model. For some other types of higher-traffic, open
      communities, this design decision would be entirely wrong, and a
      more strict solution will need to be built.

      Right now, lambda-comments can be configured to use Akismet from Automattic (the WordPress
      company) as a first line-of-defense against blog spam. As there is
      no moderation queue yet, if the comment is flagged as spam, it just
      won’t be accepted. In the future, I’d like to implement a
      moderation queue so that comments that are falsely flagged as spam
      can be accepted.

      Lastly, if you want to read a great article about commenting
      systems and abuse, go read “The
      dark side of Guardian comments”.

      Try it
      out!

      This blog post is the very first time I’ve deployed the
      commenting system ‘in-the-wild’. Try leaving a comment below!

      Better yet, see if you can set it up yourself
      on your own AWS account and on your own blog. It’s a little bit
      complicated, but it should be do-able.

      I’d love to hear any success stories (or failure reports) in the
      comments below! See if you can be the first to get it working!

      Also, if you like it, please be sure to give the project a
      GitHub star!

      
      Portland IndieWeb Summit 2016

      In other news, I bought a ticket for the IndieWeb Summit in Portland, Oregon
      on June 3-5, 2016. So if you’re going to be there, I’m hoping to
      show off the project. Also, I’m always available in Vancouver,
      Canada, and I’m frequently in Seattle. I’d love to meet for coffee
      or beer.

      And be sure to check out my current contract availability by
      clicking the ‘+’ in the upper left corner of the page!

      

    

  
    

    
      Albert Einstein and Henri Bergson’s Great Showdown About the
      Nature of Time

      
      On April 6, 1922, Einstein met a
      man he would never forget. He was one of the most celebrated
      philosophers of the century, widely known for espousing a theory of
      time that explained what clocks did not: memories, premonitions,
      expectations, and anticipations. Thanks to him, we now know that to
      act on the future one needs to start by changing the past. Why does
      one thing not always lead to the next? The meeting had been planned
      as a cordial and scholarly event. It was anything but that. The
      physicist and the philosopher clashed, each defending opposing,
      even irreconcilable, ways of understanding time. At the Société
      française de philosophie—one of the most venerable institutions in
      France—they confronted each other under the eyes of a select group
      of intellectuals. The “dialogue between the greatest philosopher
      and the greatest physicist of the 20th century” was dutifully
      written down.1 It was a script fit for the theater. The
      meeting, and the words they uttered, would be discussed for the
      rest of the century.

      The philosopher’s name was Henri Bergson. In the early decades
      of the century, his fame, prestige, and influence surpassed that of
      the physicist—who, in contrast, is so well known today. Bergson was
      compared to Socrates, Copernicus, Kant, Simón Bolívar, and even Don
      Juan. The philosopher John Dewey claimed that “no philosophic
      problem will ever exhibit just the same face and aspect that it
      presented before Professor Bergson.” William James, the Harvard
      professor and famed psychologist, described Bergson’s Creative
      Evolution (1907) as “a true miracle,” marking the “beginning of
      a new era.” For James, Matter and Memory (1896) created “a
      sort of Copernican revolution as much as Berkeley’s
      Principles or Kant’s Critique did.” The philosopher
      Jean Wahl once said that “if one had to name the four great
      philosophers one could say: Socrates, Plato—taking them
      together—Descartes, Kant, and Bergson.” The philosopher and
      historian of philosophy Étienne Gilson categorically claimed that
      the first third of the 20th century was “the age of Bergson.” He
      was simultaneously considered “the greatest thinker in the world”
      and “the most dangerous man in the world.” Many of his followers
      embarked on “mystical pilgrimages” to his summer home in
      Saint-Cergue, Switzerland.
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      Bergson’s reputation was at risk after he confronted the
      younger man. But so was Einstein’s. The criticisms leveled against
      the physicist were immediately damaging. When the Nobel Prize was
      awarded to Einstein a few months later, it was not given for the
      theory that had made the physicist famous: relativity. Instead, it
      was given “for his discovery of the law of the photoelectric
      effect”—an area of science that hardly jolted the public’s
      imagination to the degree that relativity did. The reasons behind
      the decision to focus on work other than relativity were directly
      traced to what Bergson said that day in Paris.


      The chairman for the Nobel Committee for Physics explained that
      although “most discussion centers on his theory of relativity,” it
      did not merit the prize. Why not? The reasons were surely varied
      and complex, but the culprit mentioned that evening was clear: “It
      will be no secret that the famous philosopher Bergson in Paris has
      challenged this theory.” Bergson had shown that relativity
      “pertains to epistemology” rather than to physics—and so it “has
      therefore been the subject of lively debate in philosophical
      circles.”2

      
      Einstein laid down the gauntlet by considering as valid only two
      ways of understanding time: physical and psychological.

      
      [image: Sapolsky_TH-F1]

      Also in
      Philosophy
      By Stuart Firestein

      “Ever tried. Ever failed. No matter. Try again. Fail again. Fail
      better.” —Samuel Beckett I wrote this after being reminded, by
      English novelist Marina Lewycka, of this quote from one of Samuel
      Beckett’s lesser known, later short stories....READ
      MORE

      

      

      

      The explanation that day surely reminded Einstein of the
      previous spring’s events in Paris. Clearly, he had provoked a
      controversy. These were the consequences. He had been unable to
      convince many thinkers of the value of his definition of time,
      especially when his theory was compared against that of the eminent
      philosopher. In his acceptance speech, Einstein remained stubborn.
      He delivered a lecture that was not about the photoelectric effect,
      for which he had been officially granted the prize, but about
      relativity—the work that had made him a star worldwide but which
      was now in question.

      The invocation of Bergson’s name by the presenter of the Nobel
      Prize was a spectacular triumph for the philosopher who had lived
      his life and made an illustrious career by showing how time should
      not be understood exclusively through the lens of science. It had
      to be understood, he persistently and consistently insisted,
      philosophically. Why did two of the greatest minds of modern times
      disagree so starkly, dividing intellectual communities for years to
      come?

      On that “truly historic” day when
      the two met, Bergson was unwillingly dragged into a discussion he
      had explicitly intended to avoid.3 The philosopher was
      by then much more senior than Einstein. He spoke for about half an
      hour. He had been prodded by an impertinent colleague, who had been
      in turn pressured to speak by the event organizer. “We are more
      Einsteinian than you, Monsieur Einstein,” he said. His objections
      would be heard far and wide. “Bergson was supposed by all of us to
      be dead,” explained the writer and artist Wyndham Lewis, “but
      Relativity, oddly enough at first sight, has resuscitated
      him.”4

      The physicist responded in less than a minute—including in his
      answer one damning and frequently cited sentence: “Il n’y a donc
      pas un temps des philosophes.” Einstein’s reply—stating that
      the time of the philosophers did not exist—was incendiary.

      What Einstein said next that evening was even more
      controversial: “There remains only a psychological time that
      differs from the physicist’s.” At that very moment, Einstein laid
      down the gauntlet by considering as valid only two ways of
      understanding time: physical and psychological. These two ways of
      examining time, although scandalous in the particular context that
      Einstein uttered them, had a long history. With Einstein, they
      would have an even longer one—becoming two dominant prisms
      inflecting most investigations into the nature of time during the
      20th century.

      The simple, dualistic perspective on time advocated by Einstein
      appalled Bergson. The philosopher responded by writing a whole book
      dedicated to confronting Einstein. His theory is “a metaphysics
      grafted upon science, it is not science,” he wrote. Einstein’s and
      Bergson’s contributions appeared to their contemporaries forcefully
      at odds, representing two competing strands of modern times.
      Bergson was associated with metaphysics, antirationalism, and
      vitalism, the idea that life permeates everything. Einstein with
      their opposites: with physics, rationality, and the idea that the
      universe (and our knowledge of it) could stand just as well without
      us. Einstein has since been crowned as the man whose work took
      “sensorial perception and analytical principles as sources of
      knowledge,” nothing more and nothing less.

      
      Einstein’s theory of time, argued the philosopher, prevented us
      from realizing that “the future is in reality open, unpredictable,
      and indeterminate.”

      

      The theory of relativity broke with classical physics in three
      main respects: first, it redefined concepts of time and space by
      claiming that they were no longer universal; second, it showed that
      time and space were completely related; and third, the theory did
      away with the concept of the ether, a substance that allegedly
      filled empty space and that scientists hoped would provide a stable
      background to both the universe and their theories of classical
      mechanics.

      In combination, these three insights were related to a
      startlingly new effect, time dilation, which profoundly shocked
      scientists and the general public. In colloquial terms, scientists
      often described it by saying that time slowed down at fast
      velocities and, even more dramatically, that it completely stopped
      at the speed of light. If two clocks were set at the same time with
      respect to each other, and if one of them separated from the other
      traveling at a constant speed, they would mark different times,
      depending on their respective velocities. Although observers
      traveling with the clocks would be unable to notice any changes in
      their own system, one of them was slow in comparison to the other.
      Researchers calculated a striking difference between “time1” as
      measured by a stationary clock when compared to “time2” as measured
      by a clock in motion. Which of these referred to time? According to
      Einstein, both—that is, all frames of references should be treated
      as equal. Both quantities referred equally to time. Had Einstein
      found a way to stop time?

      [image: Canales_BR-Nobel.]It’s all
      relative: The 1921 Nobel committee awarded Einstein the
      Prize for “his services to Theoretical Physics, and especially for
      his discovery of the law of the photoelectric effect.” Relativity
      was mentioned as a theory that had been challenged by
      Bergson.Albert Einstein Archives /
      Princeton University Press
      Relativity scientists argued that our common conception of
      “simultaneity” needed to be upgraded: Two events that seemed to
      occur simultaneously according to one observer were not necessarily
      simultaneous for another one. This effect was connected to other
      aspects of the theory: that the speed of light (in vacuo and in the
      absence of a gravitational field) was constant. The velocity of
      most physical objects could successively be increased by
      piggy-backing on other fast-moving objects.


      For example, a train traveling at a certain speed could be made
      to travel faster if placed on top of another fast train. While the
      first train could be traveling at, say, 50 mph, the one on top
      would go at 100 mph, the next one at 150 mph, and so on. Not so
      with light waves. The speed of light, in Einstein’s account of
      special relativity, was not only constant; it was an unsurpassable
      velocity. This simple fact led scientists not only to abandon the
      concept of absolute simultaneity, it also led them to a host of
      additional paradoxical effects, including time dilation.

      Bergson found Einstein’s definition of time in terms of clocks
      completely aberrant. The philosopher did not understand why one
      would opt to describe the timing of a significant event, such as
      the arrival of a train, in terms of how that event matched against
      a watch. He did not understand why Einstein tried to establish this
      particular procedure as a privileged way to determine simultaneity.
      Bergson searched for a more basic definition of simultaneity, one
      that would not stop at the watch but that would explain why clocks
      were used in the first place. If this, much more basic, conception
      of simultaneity did not exist, then “clocks would not serve any
      purpose.” “Nobody would fabricate them, or at least nobody would
      buy them,” he argued. Yes, clocks were bought “to know what time it
      is,” admitted Bergson. But “knowing what time it is” presupposed
      that the correspondence between the clock and an “event that is
      happening” was meaningful for the person involved so that it
      commanded their attention. That certain correspondences between
      events could be significant for us, while most others were not,
      explained our basic sense of simultaneity and the widespread use of
      clocks. Clocks, by themselves, could not explain either
      simultaneity or time, he argued.

      If a sense of simultaneity more basic than that revealed by
      matching an event against a clock hand did not exist, clocks would
      serve no meaningful purpose:

      They would be bits of machinery with which we would amuse
      ourselves by comparing them with one another; they would not be
      employed in classifying events; in short, they would exist for
      their own sake and not serve us. They would lose their raison
      d’être for the theoretician of relativity as for everybody
      else, for he too calls them in only to designate the time of an
      event.

      The entire force of Einstein’s work, argued Bergson, was due to
      how it functioned as a “sign” that appealed to a natural and
      intuitive concept of simultaneity. “It is only because” Einstein’s
      conception “helps us recognize this natural simultaneity, because
      it is its sign, and because it can be converted into intuitive
      simultaneity, that you call it simultaneity,” he
      explained.5 Einstein’s work was so revolutionary and so
      shocking only because our natural, intuitive notion of simultaneity
      remained strong. By negating it, it could not help but refer back
      to it, just like a sign referred to its object.

      Bergson had been thinking about clocks for years. He agreed that
      clocks helped note simultaneities, but he did not think that our
      understanding of time could be based solely on them. He had already
      thought about this option, back in 1889, and had quickly discounted
      it: “When our eyes follow on the face of a clock, the movement of
      the needle that corresponds to the oscillations of the pendulum, I
      do not measure duration, as one would think; I simply count
      simultaneities, which is quite different.”6 Something
      different, something novel, something important, something outside
      of the watch itself needed to be included in our understanding of
      time. Only that could explain why we attributed to clocks such
      power: Why we bought them, why we used them, and why we invented
      them in the first place.

      
      Psychological conceptions of time, Einstein insisted, were not
      only simply in error, they just did not correspond to anything
      concrete.

      

      Our perception of the world was not, as commonly thought of,
      merely contemplative and disinterested, rather it was already
      shaped by our memories. Both were defined by our sense of what we
      could act on. Bergson warned his readers that unless they
      acknowledged the active role played by memories, they would
      inevitably come back to haunt them: “But if the difference between
      perception and memory is abolished ... we become unable to really
      distinguish the past from the present, that is, from that which is
      acting.” The distinction between the past, the present, and the
      future was determined physically, physiologically, and
      psychologically.

      Einstein’s theory of time, argued the philosopher, was
      particularly dangerous because of how it treated “duration as a
      deficiency.” It prevented us from realizing that “the future is in
      reality open, unpredictable, and indeterminate.” It eliminated real
      time; that is, “what is most positive in the world.”

      During the debate, Einstein explicitly stated what he held to be
      the purpose of philosophy and why it should not play a role at all
      with respect to time. In the face of his contradictor, he gave to
      philosophy a very limited role. He proceeded to explain himself. He
      mentioned two common ways of thinking about time, psychological and
      physical. Psychological time was the time perceived by a person,
      while physical time was time as measured by a scientific
      instrument, such as a clock. Time as measured by an instrument was
      often different from time perceived by a person. Factors such as
      boredom, impatience, or simple psychological changes affected
      psychological perceptions of time. With the spread of timekeeping
      devices, the difference between time felt and time measured became
      increasingly noted. We know, for example by reading the diary of
      Franz Kafka, that in intimate accounts of that period, an “inner
      clock” often seemed to disagree from an “outer one.”

      But in most cases, physical and psychological conceptions of
      time did not have to differ too much. Most people could estimate
      time in a manner that accorded pretty well with that of a clock,
      determining very precisely the time for breakfast, lunch, and
      dinnertime. Most people could also judge if two events were
      simultaneous in a way that accorded pretty well with simultaneity
      as measured by instruments. But the opposite was true when dealing
      with very fast events. In these cases (such as during the finish of
      a horse race), the deficiency of perceptions of simultaneity when
      compared to simultaneity as determined by an instrument was clear;
      these determinations differed significantly from those determined
      with instrumental aides. In a universe marked by events occurring
      close to the speed of light, the difference between the two was
      extreme.

      According to Einstein, philosophy had been used to explain the
      relation between psychology and physics. “The time of the
      philosopher, I believe, is a psychological and physical time at the
      same time,” he explained in Paris. But relativity, by focusing on
      very fast phenomena, had shown just how off-the-mark psychological
      perceptions of time really were.

      Psychological conceptions of time, Einstein insisted, were not
      only simply in error, they just did not correspond to anything
      concrete. “These are nothing more than mental constructs, logical
      entities.” Because of the enormous speed of light, humans had
      “instinctively” generalized their conception of simultaneity and
      mistakenly applied it to the rest of the universe. Einstein’s
      theory corrected this mistaken generalization. Instead of believing
      in an overlapping area between psychological and physical
      conceptions of time (where both were important although one was
      admittedly less accurate than the other), he argued that they were
      really two distinct concepts: a mental assessment (the
      psychological one) that was wholly inadequate when compared to the
      “objective” concept: physical time.

      Bergson and Einstein accepted that an essential difference
      existed between psychological and physical conceptions of time, yet
      they made different deductions from this. For Einstein, this led
      him to conclude that “the time of the philosophers does not exist,
      there remains only a psychological time that differs from the
      physicist’s.”7 For Bergson this lesson—that
      psychological and physical assessments of time were different—made,
      on the contrary, the philosopher’s task even more interesting,
      especially because no one, not even physicists, could avoid the
      problem of relating time back to human affairs.
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      In the years that followed, Bergson
      was largely perceived to have lost the debate against the younger
      physicist. The scientist’s views on time came to dominate most
      learned discussions on the topic, keeping in abeyance not only
      Bergson’s but many other artistic and literary approaches, by
      relegating them to a position of secondary, auxiliary importance.
      For many, Bergson’s defeat represented a victory of “rationality”
      against “intuition.” It marked a moment when intellectuals were no
      longer able to keep up with revolutions in science due to its
      increasing complexity. Thus began “the story of the setback, after
      a period of unprecedented success, of Bergson’s philosophy of
      absolute time—unquestionably under the impact of relativity.” Most
      important, then began the period when the relevance of philosophy
      declined in the face of the rising influence of science.

      Biographers who write about Einstein’s life and work rarely
      mention Bergson. One exception, a book written by a colleague,
      paints a picture of eventual rapprochement between the two
      men.8 But other evidence shows just how divisive their
      encounter was. A few years before their deaths, Bergson wrote about
      Einstein, and Einstein mentioned Bergson one last time. They
      underlined—once again—just how wrong the perspective of the other
      remained. While the debate was for the most part removed from
      Einstein’s legacy, it was periodically brought up by many of
      Bergson’s followers. The simple act of reviving the discussion that
      took place that day in April 1922 was not a matter that could be
      taken lightly. Not only is the incident itself divisive—its
      relevance for history is still contested.

      Jimena Canales is a professor of history at the University of
      Illinois at Urbana who writes about the history of science and
      technology.
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      Locking in WebKit

      
      Back in August
      2015 we replaced all spinlocks and 
      OS-provided mutexes in WebKit with the new 
      WTF::Lock (WTF stands for Web Template Framework).
      We also replaced all OS-provided condition variables with 
      WTF::Condition. These new primitives have some
      cool properties:

      
      	WTF::Lock and WTF::Condition only
      require one byte of storage each. WTF::Lock only needs
      two bits in that byte. The small size encourages using huge numbers
      of very fine-grained locks. OS mutexes often require 64 bytes or
      more. The small size of WTF::Lock means that there’s
      rarely an excuse for not having one, or even multiple, fine-grained
      locks in any object that has things that need to be
      synchronized.

      	WTF::Lock is super fast in the case that matters
      most: uncontended lock acquisition. Parallel algorithms tend to
      avoid contention by having many fine-grained locks. This means that
      a mature parallel algorithm will have many uncontended lock
      acquisitions – that is, calls to lock() when the lock
      is not held, and calls to unlock() when nobody is
      waiting in line. Similarly, WTF::Condition optimizes
      for the common case of calling notify when no threads
      are waiting.

      	WTF::Lock is fast under microcontention. A
      microcontended lock is one that is contended and the critical
      section is short. This means that shortly after any failing lock
      attempt, the lock will become available again since no thread will
      hold the lock for long. This is the most common kind of contention
      in parallel code, since it’s common to go to great pains to do very
      little work while holding a lock.

      	WTF::Lock doesn’t waste CPU cycles when a lock is
      held for a long time. WTF::Lock is adaptive:
      it changes its strategy for how to wait for the lock to become
      available based on how long it has been trying. If the lock doesn’t
      become available promptly, WTF::Lock will suspend the
      calling thread until the lock becomes available.

      

      Compared to OS-provided locks like pthread_mutex,
      WTF::Lock is 64 times smaller and up to 180 times
      faster. Compared to OS-provided condition variables like
      pthread_cond, WTF::Condition is 64 times
      smaller. Using WTF::Lock instead of
      pthread_mutex means that WebKit is 10% faster on
      JetStream, 5%
      faster on Speedometer, and 5%
      faster on our page loading test.

      Making WTF::Lock and WTF::Condition
      fit in one byte is not easy and the technique behind this has
      multiple layers. Lock and Condition
      offload all thread queueing and suspending functionality to
      
      WTF::ParkingLot, which manages thread queues keyed
      by the addresses of locks. The design of ParkingLot is
      inspired by futexes.
      ParkingLot is a portable user-level implementation of
      the core futex API. ParkingLot also needs fast locks,
      so we built it its own lock called 
      WTF::WordLock.

      This post starts by describing some background on locking. Then
      we describe the ParkingLot abstraction and how we use
      this to build WTF::Lock and
      WTF::Condition. This section also shows some alternate
      locking algorithms on top of ParkingLot. Then we
      describe how ParkingLot and WordLock are
      implemented, hopefully in enough detail to allow for meaningful
      scrutiny. The post concludes with some performance data, including
      comparisons to a bunch of lock algorithms.

      Background

      This section describes some background about locks. This
      includes the atomic operations that we use to implement locks as
      well as some classic algorithms like spinlocks and adaptive locks.
      This section also tries to give appropriate shout-outs to other
      lock implementations.

      Atomic Operations

      CPUs and programming languages provide few guarantees about the
      way that memory accesses interact with each other when executed
      concurrently, since the expectation is that programmers will
      prevent concurrent accesses to the same memory by guarding them
      with locks. But if you’re like me and you like to implement your
      own locks, you’ll want some lower-level primitives that do have
      strong guarantees.

      C++ provides std::atomic
      for this purpose. You can use it to wrap a primitive type (like
      char, int, or a pointer type) with some
      atomicity guarantees. Provided you stick to the strongest memory
      ordering (seq_cst), you can be sure that the
      concurrent executions of std::atomic operations will
      behave as if they were executed sequentially. This makes it
      possible to consider whether an algorithm is sound even when run
      concurrently by envisioning all of the possible ways that its
      various atomic operations could interleave.

      In WebKit, we use our own wrapper called 
      WTF::Atomic. It’s a stripped-down version of what
      std::atomic provides. We’ll just consider three of its
      atomic methods: T load(), store(T), and
      bool compareExchangeWeak(T expected, T desired).

      Load and store are self-explanatory. The interesting one is
      compareExchangeWeak, which implements the atomic CAS
      (compare-and-swap) operation. This is a CPU primitive that can be
      thought of as running the following pseudocode atomically:

      
      bool CAS(T* pointer, T expected, T desired)
      {
          if (*pointer != expected)
              return false;
          *pointer = desired;
          return true;
      }
      
      

      This method is implemented in terms of
      std::atomic::compare_exchange_weak, which is
      implemented in terms of the lock; cmpxchg instruction
      on x86 or in terms of ldrex and strex on
      ARM. This form of CAS is called weak because we allow it
      to spuriously do nothing and return false. The opposite is not true
      – if the CAS returns true, then it must be that during its atomic
      execution, it saw *pointer being equal to
      expected and then it changed it to
      desired.

      Spinlocks

      Armed with WTF::Atomic, we can implement the
      simplest kind of lock, called a spinlock. Here’s what it
      looks like:

      
      class Spinlock {
      public:
          Spinlock()
          {
              m_isLocked.store(false);
          }
          void lock()
          {
              while (!m_isLocked.compareExchangeWeak(false, true)) { }
          }
          void unlock()
          {
              m_isLocked.store(false);
          }
      private:
          Atomic<bool> m_isLocked;
      };
      
      

      This works because the only way that lock() can
      succeed is if compareExchangeWeak returns true. If it
      returns true, then it must be that this thread observed
      m_isLocked being false and then instantly flipped it
      to true before any other thread could also see that it had been
      false. Therefore, no other thread could be holding a lock. Either
      no other thread is calling lock() at all, or their
      calls to lock() are still in the while
      loop because compareExchangeWeak is continuing to
      return false.

      Adaptive Locks

      Adaptive locks spin only for a little bit and then
      suspend the current thread until some other thread calls
      unlock(). This guarantees that if a thread has to wait
      for a lock for a long time, it will do so quietly. This is a
      desirable guarantee for conserving CPU time and power.

      By contrast, spinlocks can only handle contention by spinning.
      The simplest spinlocks will make contending threads appear to be
      very busy and so the OS will make sure to schedule them. This will
      waste tons of power and starve other threads that may really be
      able to do useful work. A simple solution would be to make the
      spinlock sleep – maybe for a millisecond – in between CAS attempts.
      This
      turns out to hurt performance on real code because it postpones
      progress when the lock becomes available during the sleep interval.
      Also, sleeping doesn’t completely solve the problem of inefficiency
      when spinning. WebKit has some locks that may be held for a long
      time. For example, the lock used to control the interleaving
      between compiler threads and the garbage collector is usually
      uncontended but may sometimes be held, and contended, for the
      entire time that it takes to collect the JS heap or the entire time
      that it takes to compile some function. In the most extreme case, a
      lock may protect blocking IO. That could happen unexpectedly, for
      example if a page fault on an innocent-looking load leads to
      swapping. Some critical sections can take a while and we don’t want
      contending threads to poll during that time, even if it’s only
      1KHz.

      There’s no good way to make spinning efficient. If we increase
      the delay between CAS attempts then we’re just increasing the delay
      between when the lock gets unlocked and when a contending thread
      can get it. If we decrease the delay, the lock becomes less
      efficient. We want a locking algorithm that ensures that if
      spinning doesn’t quickly give us the lock, our thread will quietly
      wait until exactly the moment when the lock is released. This is
      what adaptive locks try to do.

      The kinds of adaptive locks that we will implement can be split
      into two separate data structures:

      
      	Some small, atomic field in memory that summarizes the lock’s
      state. It can answer questions like, “does anyone hold the lock?”
      and “is anyone waiting to get the lock?” We will call this the
      atomic state.

      	A queue of threads that are waiting to get the lock, and a
      mechanism for suspending and resuming those threads. The queue must
      have its own synchronization primitives and some way to be kept in
      sync with the atomic state. We say parking to mean
      enqueuing a thread and suspending it. We say unparking to
      mean dequeuing a thread and resuming it.

      

      WTF::Lock is WebKit’s implementation of an adaptive
      lock, optimized for the things that we care about most: low space
      usage and a great fast path for uncontended lock acquisition. The
      lock object contains only the atomic state, while the queue is
      created on-demand inside the ParkingLot. This allows
      our locks to only require two bits. Like other adaptive locks,
      WTF::Lock provides a guarantee that if a thread has to
      wait a long time for a lock, it will do so quietly.

      Related Work

      If you know that you need an adaptive lock, you can be sure that
      the mutex implementation on modern OSes will safely adapt to
      contention and avoid spinning. Unfortunately, most of those OS
      mutexes will be slower and bigger than a spinlock because of
      artificial constraints that arise out of compatibility (a
      pthread_mutex_t is 64 bytes because of binary
      compatibility with programs that were compiled against ancient
      implementations that had to be 64 bytes) or the need to
      support features that you may not need (like recursive locking –
      even if you don’t use it, pthread_mutex_lock() may
      have to at least do a check to see if you asked for it).

      WebKit’s locking infrastructure is most inspired by Linux’s
      excellent futex
      primitive. Futexes empower developers to write their own adaptive
      locks in just a few lines of code (Franke,
      Russell, and Kirkwood ’02). Like with futexes, we materialize
      most of the data for a lock only when that lock experiences
      contention, and we locate that data by hashing the address of the
      lock. Unlike futexes, our implementation does not rely on kernel
      support and so it will work on any OS. The ParkingLot
      API has some functionality that futexes lack, like invoking
      callbacks while holding internal ParkingLot locks.

      The idea of using very few bits per adaptive lock is widespread,
      especially in Java virtual machines. For example, HotSpot
      usually only needs two or three bits for the state of an object’s
      lock. I’ve
      co-authored a paper on locking in another Java VM, which also
      compressed an adaptive lock into a handful of bits. We can trace
      some of the ideas about how to build locks that are small and fast
      to meta-locks (Agesen et al ’99)
      and tasuki locks (Onodera and Kawachiya
      ’99).

      New proposals like 
      std::synchronic and hardware
      transactional memory also seek to speed up locking. We will
      show that these techniques don’t exhibit the performance qualities
      that we want for WebKit.

      Despite the basic techniques being well understood in certain
      communities, it’s hard to find a lock implementation for C++ that
      has the qualities we want. Spinlocks are widely available, and
      those are often optimized for using little memory and having great
      fast paths for uncontended lock acquisition and microcontention.
      But spinlocks will waste CPU time when the lock isn’t immediately
      available. OS mutexes know how to suspend threads if the lock is
      not available, so they are more efficient under contention – but
      they usually have a slower uncontended fast path, they don’t
      necessarily have the behavior we want under microcontention, and
      they require more memory. C++ provides access to OS mutexes with
      std::mutex. Prior to WTF::Lock, WebKit
      had a mix of spinlocks and OS mutexes, and we would try to pick
      which one to use based on guesses about whether they would benefit
      more from uncontended speed or efficiency under contention. If we
      needed both of those qualities, we would have no choice but to punt
      on one of them. For example, we had a spinlock in 
      CodeBlock that should have been adaptive because
      it protected long critical sections, and we had an OS mutex in our
      parallel GC that accounted for 3% of our time in the Octane Splay
      benchmark because of shortcomings in fast path performance. These
      issues are resolved thanks to WTF::Lock. Also, there
      was no way to have a small lock (1 byte or less) that was also
      efficient under contention, since OS mutexes tend to be large. In
      the most extreme case we will have one lock per JavaScript object,
      so we care about the sizes of our locks.

      Building Locks With ParkingLot

      WTF::ParkingLot is a framework for building
      adaptive locks and other synchronization primitives. Both
      WTF::Lock and WTF::Condition use it for
      parking threads until the lock becomes available or the condition
      is notified. ParkingLot also gives us everything we’ll
      need to implement the synchronization schemes that are coming to
      Web standards like SharedArrayBuffer.

      Adaptive locks need to be able to park and unpark threads. We
      believe that synchronization primitives shouldn’t have to maintain
      their own parking queues, but instead, a single global data
      structure should provide a way to access queues by using the
      address of the lock’s atomic state as a key. The concurrent
      hashtable of queues is called WTF::ParkingLot. Since
      each thread can be queued only once at any given time,
      ParkingLot‘s memory usage is bounded by the number of
      threads. This means that locks don’t have to pay the price for
      space for a queue. This makes a lot of sense since for WebKit,
      which usually runs a small number of threads (about ten on my
      system) but can easily allocate millions of locks (in the worst
      case, one per JavaScript object).

      ParkingLot takes care of queueing and thread
      suspension so that lock algorithms can focus on other things, like
      how long to spin for, what kind of delays to introduce into
      spinning, and which threads to favor when unlocking.

      ParkingLot API

      Parking refers to suspending the thread while
      simultaneously enqueuing it on a queue keyed by some address.
      Unparking refers to dequeuing a thread from a queue keyed
      by some address and resuming it. This kind of API must have a
      mechanism for resolving the suspend-resume race, where if a resume
      operation happens moments before the suspend, then the thread will
      suspend anyway. ParkingLot resolves this by exposing
      the fact that the queues are protected by locks. Parking invokes a
      client callback while the queue lock is held, and gives the client
      a chance to decide whether they want to proceed or not. Unparking
      invokes a client callback while the queue lock is held, and tells
      the client if a thread was dequeued and if there are any more
      threads left on the queue. The client can rely on this additional
      synchronization to ensure that racy deadlocks don’t happen.

      The basic API of ParkingLot comprises
      parkConditionally, unparkOne, and
      unparkAll.

      
      bool parkConditionally(address, validation, beforeSleep,
      timeout). This takes the const void*
      address and uses it as a key to find, and lock, that
      address’s queue. Calls the bool validation() callback
      (usually a C++ lambda)
      while the lock is held. If the validation returns false, the queue
      is unlocked and parkConditionally() returns false.

      If the validation returns true, the current thread is placed on
      the queue and the queue lock is released. Once the queue lock is
      released, this calls the void beforeSleep() callback.
      This turns out to be useful for some synchronization primitives,
      but most locks will pass an empty thunk. At this point, the thread
      is suspended until some call to unparkOne() dequeues
      this thread and resumes it. The client can supply a timeout using a
      ParkingLot::Clock::time_point
      (ParkingLot::Clock is a typedef for std::chrono::steady_clock).
      The thread will not stay suspended past that time point.

      
      void unparkOne(address, callback). This takes a
      const void* address and uses it as a key to find, and
      lock, that address’s queue. Then unparkOne tries to
      dequeue one thread. Once it does this, it calls the void
      callback(UnparkResult), passing a struct that reports if a
      thread was dequeued and whether the queue is now empty. Then it
      unlocks the queue lock. If it had dequeued a thread, it signals it
      now.

      
      void unparkAll(address). Unparks all threads on
      the queue associated with the given address.

      This API gives us everything we need to implement the locking
      primitives we need: WTF::Lock and
      WTF::Condition. It also allows us to build userland
      versions of FUTEX_WAIT/FUTEX_WAKE
      operations, which are required by SharedArrayBuffer
      atomics.

      WTF::Lock

      We have many locks, including locks inside very frequently
      allocated objects like JavaScriptCore’s 
      Structure. We want a lock object that takes as
      little memory as possible, so we go to great lengths to make the
      lock fit in one byte. We do many such tricks in
      Structure since there is so much pressure to make that
      object small. We also want the core algorithm to leave open the
      possibility of having the lock embedded in bitfields, though
      Lock doesn’t support this because 
      C++ requires objects to be at least one byte. As this section
      will show, ParkingLot makes it so easy to implement
      fast locking algorithms that if clients did need to embed a lock
      into a bitfield, it would be reasonable for them to have their own
      implementation of this algorithm.

      Our goals are to have a lock that:

      
      	Uses as few bits as possible.

      	Requires only a CAS on the fast path for locking and unlocking
      to maximize uncontended throughput.

      	Is adaptive.

      	Maximizes throughput under contention.

      

      Making the fast path require only a CAS means that
      WTF::Lock‘s atomic state must be able tell us if there
      are any threads parked. Otherwise, the unlock()
      function would have to always call
      ParkingLot::unparkOne() in case there were threads
      parked. While such an implementation would be functional, it would
      be far from optimal. Afterall, ParkingLot::unparkOne()
      is obligated to do hashing, acquire some queue lock, and call a
      callback. This is a lot more work than we want in the common path
      of unlock().

      This implies having two bits for the atomic state:

      
      	isLockedBit to indicate if the lock is
      locked.

      	hasParkedBit to indicate if there may be threads
      parked.

      

      Locking is allowed to proceed any time the
      isLockedBit is clear even if the
      hasParkedBit is set. This property is called
      barging. We will dive into the implications of barging
      later.

      If locking does not succeed, the algorithm chooses between
      trying again and parking the thread. Prior to parking, it sets the
      hasParkedBit. The validation callback it
      passes to parkConditionally checks that the lock still
      has both isLockedBit and hasParkedBit
      set. We don’t want to park if isLockedBit is clear
      since this means that the lock is available. We don’t want to park
      if hasParkedBit is clear since this means that the
      lock has forgotten that we are about to park.

      If the hasParkedBit is clear, then unlocking just
      clears the isLockedBit. If the
      hasParkedBit is set, it calls unparkOne()
      passing a callback that really unlocks the lock. This callback will
      set the lock’s state to either hasParkedBit or
      0, depending on whether the UnparkResult
      reports that there are still more threads on the queue.

      We call this basic algorithm a barging lock, and a
      basic implementation might look like this:

      
      class BargingLock {
      public:
          BargingLock()
          {
              m_state.store(0);
          }
          void lock()
          {
              for (;;) {
                  uint8_t currentState = m_state.load();
                                          if (!(currentState & isLockedBit)
                      && m_state.compareExchangeWeak(currentState,
                                                     currentState | isLockedBit))
                      return;
                                                                  m_state.compareExchangeWeak(isLockedBit,
                                              isLockedBit | hasParkedBit);
                                          ParkingLot::parkConditionally(
                      &m_state,
                      [this] () -> bool {
                          return m_state.load() == isLockedBit | hasParkedBit;
                      });
              }
          }
          void unlock()
          {
                      if (m_state.compareExchangeWeak(isLockedBit, 0))
                  return;
                      ParkingLot::unparkOne(
                  &m_state,
                  [this] (ParkingLot::UnparkResult result) {
                                                      if (result.mayHaveMoreThreads)
                          m_state.store(hasParkedBit);
                      else
                          m_state.store(0);
                  });
          }
      private:
          static const uint8_t isLockedBit = 1;
          static const uint8_t hasParkedBit = 2;
          Atomic<uint8_t> m_state;
      };
      
      

      WTF::Lock closely follows this algorithm, but has
      additional performance tweaks like spinning and inline fast
      paths.

      Spinning

      Adaptive locks combine parking and spinning. Spinning is great
      because it protects microcontention scenarios from doing parking.
      Microcontention is when a thread fails the fast path lock
      acquisition because the lock is not available right now, but that
      lock will become available in less time than what it would take to
      park and then unpark. Before WTF::Lock::lock() parks a
      thread, it will spin 40 times, calling 
      yield between spins. This turns out to be good enough across a
      while range of platforms. The algorithm can be visualized as
      follows:

      
      if (m_word.compareExchangeWeak(0, isLockedBit))
          return;
      for (unsigned i = 40; i--;) {
              if (m_word.load() & hasParkedBit)
              break;
              if (m_word.compareExchangeWeak(0, isLockedBit))
              return;
              sched_yield();
      }
      
      

      This is a known-good approach, which we borrow from JikesRVM’s
      locks. We suspect that this algorithm, including the spin limit
      set at 40, is portable enough for our needs. JikesRVM experiments
      found it to be optimal on a 12-way POWER machine in 1999. I found
      that it was still optimal when I
      tried to optimize those locks further on Intel hardware with
      various CPU and memory topologies. Microbenchmarks that I ran for
      this post confirm that 40 is still optimal, and that there is a
      broad plateau of near-optimal settings between about 10 and 60
      spins.

      Fast Paths

      WTF::Lock is structured around an inline fast path
      for lock() that just does a single lock attempt, and
      an inline fast path for unlock() that unlocks the lock
      if there is nobody parked. Having small inline fast paths means
      that most lock clients will only pay the price of a CAS on locking
      and unlocking.

      Summary of WTF::Lock

      WTF::Lock is a high performance lock that fits in
      one byte. The underlying algorithm only needs two bits, so it would
      be suitable for cramming a lock into a bitfield. See 
      wtf/Lock.h and 
      wtf/Lock.cpp for the full implementation.

      Barging and Fairness

      WTF::Lock makes a particular choice about how to
      handle unlocking: it clears the isLockedBit, which
      makes the lock available to any thread, not just the one it
      unparks. This implies that the thread that has been waiting for the
      longest may have the lock stolen from it by some other thread,
      which may not have waited at all. A thread that suffers such defeat
      has no choice but to park again, which puts it at the end of the
      queue.

      This shortcoming can be fixed by having unlock()
      unpark a thread without releasing the lock. This kind of protocol
      hands off ownership of the lock from the thread doing the unlocking
      to the thread that had waited the longest. If the lock also lacks
      an adaptive spin loop, then this protocol enforces perfect FIFO
      (first-in, first-out) discipline on threads contending for a lock.
      FIFO is an attractive property, and it ensures that no thread will
      get the lock stolen from it.

      However, allowing barging instead of enforcing FIFO allows for
      much higher throughput when a lock is heavily contended. Heavy
      contention in systems like WebKit that use very fine-grained locks
      implies that multiple threads are repeatedly locking and unlocking
      the same lock. In the worst case, a thread will make very little
      progress between two critical sections protected by the same lock.
      In a barging lock, if a thread unlocks a lock that had threads
      parked then it is still eligible to immediately reacquire it if it
      gets to the next critical section before the unparked thread gets
      scheduled. Barging permits threads engaged in microcontention to
      take turns acquiring the lock many times per turn. On the other
      hand, FIFO locks force contenders to form a convoy where
      they only get to hold the lock once per turn. This makes the
      program run much slower than with a barging lock because of the
      huge number of context switches – one per lock acquisition!

      Futex Algorithms and ParkingLot

      ParkingLot is very similar to futexes.
      Both primitives follow the principle that a lock should not have to
      maintain its own queue. Futexes get help from the kernel and have a
      richer API, which enables some locking protocols that would be
      impossible to implement with ParkingLot, like priority
      inheritance locks. However, ParkingLot is powerful
      enough to support the based
      FUTEX_WAIT/FUTEX_WAKE operations that
      form the core of futexes.

      FUTEX_WAIT can be implemented as follows:

      
      enum Result {
          TimedOut,     TryAgain,     Success   };
      Result wait(Atomic<int32_t>* futex, int32_t expected,
                  Clock::time_point timeout)
      {
          bool comparisonSucceeded = false;
          bool result = ParkingLot::parkConditionally(
              futex,
              [&] () -> bool {
                  comparisonSucceeded = futex->load() == expected;
                  return comparisonSucceeded;
              },
              [] () { },
              timeout);
          if (result)
              return Success;
          if (comparisonSucceeded)
              return TimedOut;
          return TryAgain;
      }
      
      

      ParkingLot abstracts a simple version of this
      behind an API called parkConditionally().

      FUTEX_WAKE that wakes one thread (the common case)
      can be implemented as a call to unparkOne:

      
      bool wake(Atomic<int32_t>* futex)
      {
          return ParkingLot::unparkOne(futex).didUnparkThread;
      }
      
      

      Being able to emulate core futex functionality means that we can
      implement various kind of futex-based lock algorithms. We have done
      this for the purpose of 
      benchmarking our lock implementations. Here are some of the
      lock algorithms that we have implemented:

      
      	
      ThunderLock: simple lock algorithm that unparks
      all threads anytime there had been threads parked. This releases a
      thundering
      herd of threads that all try to grab the lock. All but one will
      have to park again. This algorithm is simpler than
      BargingLock and requires only three states. It’s easy
      to implement this with futexes, which support a variant of
      WAKE that wakes all threads. This is also a great
      algorithm to use if multiple locks share the same address.

      	
      CascadeLock: adaptive lock that is similar to
      glibc‘s
      lowlevellock algorithm used for
      pthread_mutex on Linux. This algorithm unparks at most
      one thread on unlock(). The hard part of an adaptive
      lock that unparks at most one thread is determining when the atomic
      state is allowed to forget that there are threads parked. The
      sooner the atomic state claims there are no thread parked, the
      sooner unlock() calls can take the fast path. But we
      don’t want to forget parked threads too soon, as this could lead to
      deadlock. WTF::Lock solved this problem by using the
      unparkOne() callback, but that’s not available to
      futexes. Instead, CascadeLock solves this problem by
      having any thread that parks acquire the lock in the
      LockedAndParked state. This conservatively ensures
      that we never forget about parked threads. It also means that as
      soon as a thread succeeds in acquiring the lock without parking and
      no other threads are contending, the lock will forget the parked
      state and future unlocks will be fast.

      	
      HandoffLock: This is a strict first-in, first-out
      lock that has unlock() hand off lock ownership to the
      thread it unparks. This lock is more deterministic than the other
      algorithms, but as we will show in our performance evaluation, it’s
      also a lot slower.

      

      Additionally, we’ve also implemented a version of
      WTF::Lock in this same style so that it’s easy to
      compare to the other algorithms:

      
      	
      BargingLock: configurable version of
      WTF::Lock. This lock cannot be implemented using
      futexes because it requires a callback in unparkOne(),
      which only ParkingLot provides.

      

      WTF::Condition

      The park/unpark operations of ParkingLot align
      perfectly with the needs of condition variables.
      WTF::Condition supports lots of condition-variable
      primitives, like various kinds of waiting with a timeout. In this
      section we just consider the three most basic primitives, since the
      other ones are easy to build on top of these: wait,
      notifyOne, and notifyAll.

      The hardest part of a condition variable is that it must appear
      to unlock the lock at the same time that the thread waits on the
      condition. Unlocking the lock and separately waiting on the
      condition would mean that notify operations could
      happen just after unlocking and just before waiting. We address
      this with the beforeSleep callback to
      parkConditionally. This callback runs just after the
      ParkingLot places the calling thread on a parking
      queue, but just before the thread is actually parked. This means
      that as soon as the lock is unlocked, any notify
      operations are guaranteed to release this thread from the condition
      variable.

      This is a simple and precise algorithm, which ensures that
      wait will never return unless the condition was
      notified.

      Interestingly, this algorithm means that
      WTF::Condition doesn’t actually need to place any data
      into its atomic state – it just uses it to access a queue in the
      ParkingLot, which then does all of the work. We
      exploit this to use the contents of the Condition to
      just record whether there are any waiters. We use the various other
      callbacks from ParkingLot to maintain this cache, and
      we use it to make notifyOne/notifyAll
      very fast when there isn’t anyone waiting: they just return without
      calling into ParkingLot.

      The complete algorithm for the fundamental
      Condition operations is:

      
      class Condition {
      public:
          Condition()
          {
              m_hasWaiters.store(false);
          }
          void wait(Lock& lock)
          {
              ParkingLot::parkConditionally(
                  &m_hasWaiters,
                  [this] () -> bool {
                                                                      m_hasWaiters.store(true);
                      return true;
                  },
                  [this, &lock] () {
                                                                                                                      lock.unlock();
                  });
              lock.lock();
          }
          void notifyOne()
          {
              if (!m_hasWaiters.load())
                  return;
              ParkingLot::unparkOne(
                  &m_hasWaiters,
                  [this] (ParkingLot::UnparkResult result) {
                      m_hasWaiters.store(result.mayHaveMoreThreads);
                  });
          }
          void notifyAll()
          {
              if (!m_hasWaiters.load())
                  return;
              m_hasWaiters.store(false);
              ParkingLot::unparkAll(&m_hasWaiters);
          }
      private:
          Atomic<bool> m_hasWaiters;
      };
      
      

      This case illustrates some differences from futexes. Supporting
      condition variables with futexes requires a bit more magic, since
      we have to unlock the lock before calling FUTEX_WAIT.
      That would allow a notify call to happen in between
      the unlocking and the waiting.

      One way around this is to use the atomic state to indicate if
      there is currently any thread stuck in between unlocking and
      waiting. We would set it to true at the start of wait,
      and set it to false at the start of notify.
      Unfortunately, that would lead to spurious returns from
      wait: anytime a notify operation happens
      just before we get to FUTEX_WAIT, the
      wait will return even if the notify also
      woke up some other thread. This would be a valid implementation of
      wait 
      according to pthreads 
      and Java, since those allow for spurious wakeups.

      We like that ParkingLot allows us to avoid spurious
      wakeups. When debugging concurrent code, it’s great to be able to
      isolate what happened. Ensuring that wait only returns
      as a result of a notification is a welcome dose of determinism when
      trying to understand the behavior of a concurrent program.

      WTF::Lock and WTF::Condition both take
      just one byte and implement all of the features you’d expect from
      such synchronization primitives. This is possible due to the
      flexibility of the ParkingLot API.
      ParkingLot is also powerful enough to support many
      futex-based algorithms, since
      ParkingLot::compareAndPark/unparkOne are
      intra-process equivalents of
      FUTEX_WAIT/FUTEX_WAKE.

      Implementing WTF::ParkingLot

      WTF::ParkingLot provides the primitives needed to
      build any kind of adaptive lock. ParkingLot is a
      collection of queues of parked threads. Queues are keyed by the
      address of their lock’s atomic state. ParkingLot is
      based on a concurrent hashtable to maximize parallelism – even if
      many threads are experiencing contention and need to do things to
      the queues, those threads will likely get to do their queue
      operations in parallel because the hashtable has no single
      bottleneck.

      We use ParkingLot to save memory in locks. A risk
      with any side-table approach is that we are just shifting space
      consumption from the lock object to the ParkingLot.
      Fortunately, ParkingLot gives us a strong guarantee:
      the size of ParkingLot is bounded by the number of
      threads. It mostly relies on thread-local objects, which it
      allocates on-demand and destroys automatically when threads die. As
      we will show, all of ParkingLot‘s data structures obey
      the rule that their size is asymptotically bounded by the number of
      threads. This means that the number of locks and even the rate at
      which you contend on them has no impact on the hard O(threads)
      space bound of ParkingLot. In exchange for this fixed
      per-thread overhead, ParkingLot enables all of your
      locks to take only one byte each.

      There are three fundamental operations:
      parkConditionally, unparkOne, and
      unparkAll. We’ll describe just the first two in this
      section, since unparkAll is trivial to implement using
      the same logic as unparkOne.

      Concurrent Hashtable of Synchronized Queues

      An easy way to implement ParkingLot is to have a
      single lock that guards a hashtable that maps addresses to queues.
      This would probably work great for programs that weren’t very
      parallel, but that lock will become a bottleneck in programs with
      lots of threads. ParkingLot avoids this bottleneck by
      using a concurrent hashtable.

      The intuition behind concurrent hashtables is that different
      threads are unlikely to interfere with each other because they are
      likely to do accesses using different keys, which hash to different
      buckets. Therefore even concurrent writes are likely to proceed in
      parallel. The most sophisticated concurrent hashtable algorithms
      use lock-free data structures throughout. But a simpler approach is
      to just put a lock around each bucket. This is the approach we take
      in ParkingLot. The algorithm turns out to be fairly
      simple because we do not have to optimize resizing. We can take
      these shortcuts because:

      
      	There is only one concurrent hashtable. ParkingLot
      is not instantiable. All of its member functions are static. So
      there is only one of these concurrent hashtables in any
      process.

      	Its size is bounded by the number of threads. A thread takes a
      lot of memory already. This means that we don’t have to be worried
      about the space consumption of this hashtable, so long as it’s
      O(threads) and the per-thread overhead is significantly smaller
      than a typical thread stack.

      	We must acquire a lock associated with the queue once we find
      it in the hashtable. This means that it wouldn’t be too beneficial
      to make the hashtable itself lock-free. All users of it will grab a
      lock anyway. This motivates a solution that doesn’t involve a
      lock-free concurrent hashtable – just one that attempts to minimize
      lock contention.

      	Iterating over the whole table is uncommon and not very
      important. This means that iteration, like resizing, can be
      gross.

      

      Our resizing algorithm will leak the old (smaller) hashtable.
      This is essential for making the algorithm sound. Because there is
      only one ParkingLot and its size is bounded by the
      number of threads, we can compute a hard bound on the amount of
      leaked memory.

      The most important part of our resizing algorithm is that it
      makes resizing an extremely rare event. Resizing the table only
      happens when the following conditions arise:

      
      	a thread parks itself for the first time.

      	the thread count at that time is greater than one third of the
      hashtable’s size.

      

      This ensures that resizing occurs only when the high watermark
      of threads increases. When we grow the table, we always make the
      new size be twice what we need. These rules combined ensure that if
      the max number of threads that were active at any time is N then
      the number of resizes we have ever done is at most log(N). Since we
      know that we can implement a very bad resize algorithm, we’ll first
      consider how to make the ParkingLot work in the
      absence of resizing.

      Simplified Algorithm for a Fixed-Size Hashtable

      Let’s assume that the hashtable size is fixed and all threads
      agree on a pointer to the hashtable. This allows us to consider a
      simpler version of the algorithm. We’ll worry about adding resizing
      later.

      The basic algorithm we use is that each hashtable bucket is a
      queue. Each bucket has a lock (specifically, a
      WordLock, described later in this section) to protect
      itself. We use this lock as the queue lock for the purpose
      of the ParkingLot API. The hashtable only supports
      enqueue and dequeue, so collisions are handled by
      simply interleaving the collided queues. For example, if addresses
      0x42 and 0x84 both hash to bucket at index 7, and you perform a
      sequence of enqueue operations like:

      
      	enqueue(0x42, T1)

      	enqueue(0x42, T2)

      	enqueue(0x84, T3)

      	enqueue(0x84, T4)

      

      Then the bucket at index 7 will point to a queue that looks
      like:

      
      head -> {addr=0x42, thr=T1} -> {addr=0x42, thr=T2} -> {addr=0x84, thr=T3} -> {addr=0x84, thr=T4} <- tail
      
      

      This design means that enqueuing doesn’t have to worry about
      collisions at all; it just records the actual desired address in
      the queue node (i.e. the ThreadData for the current
      thread). Dequeuing resolves collisions by finding the first element
      in the list, starting at head, that has the address we are
      dequeuing for.

      After enqueuing a thread when parking, ParkingLot
      must suspend it until it is dequeued during unparking.
      ParkingLot uses a thread-local condition variable to
      suspend threads. Only large overheads matter on this code path,
      since its performance is dominated by the work that the OS has to
      do to make the thread not runnable anymore. Hence, it’s fine for
      ParkingLot to bottom out in OS condition variable
      code.

      In this design, ParkingLot::parkConditionally
      proceeds as follows:

      
      	Hash the provided atomic state address to get the index into
      the hashtable. Better yet, this gives us a pointer to our bucket.
      From here on, we only worry about this bucket.

      	Lock the bucket’s lock.

      	Call the provided validation callback. The bucket’s lock is
      also the queue lock for the client’s atomic state address, so
      calling the validation callback here satisfies the contract of
      parkConditionally. If the validation fails, we release
      the bucket lock and return.

      	If the validation succeeds, we enqueue the current thread by
      appending it to the linked list at the tail. The current thread’s
      ThreadData will contain the address that we are
      parking on.

      	Unlock the bucket’s lock.

      	Call the beforeSleep callback. Doing work at this
      point turns out to be great for condition variables; more on that
      later.

      	Wait on the current thread’s parking condition variable.

      

      Unparking a thread via ParkingLot::unparkOne
      proceeds as follows:

      
      	Hash the provided atomic state address to get the bucket
      pointer.

      	Lock the bucket’s lock.

      	Search forward from head to find the first entry in the queue
      that matches our address, and then remove that entry. We may not
      find any such entry. The queue may even be completely empty.

      	Call the provided callback, telling it if we dequeued any
      threads and if the queue has any more elements. Giving this
      information to the client while we hold the bucket’s lock turns out
      to be great for locks; more on that later.

      	Unlock the bucket’s lock.

      	If we had dequeued a thread, tell it that it can wake up now by
      signaling its parking condition.

      

      The other operations on ParkingLot are simple
      variations on these two. ParkingLot::compareAndPark is
      just a wrapper for parkConditionally, and
      unparkAll is almost like unparkOne except
      that it finds all of the entries matching the address rather than
      just the first one.

      Resizing the Hashtable

      We don’t want to make a guess about how many threads the process
      will have. WebKit contributors sometimes like to add threads, and
      we don’t want to discourage that. Web APIs can cause WebKit to
      start threads, and the number of threads can be controlled by the
      web page. Therefore, we don’t want to get into the business of
      guessing how many threads we will see. This implies that the
      hashtable must be resizable.

      If we lock every bucket in the current hashtable, then we have
      exclusive access to the table and we can do with it as we wish. Any
      other thread wishing to access the table will be stuck trying to
      acquire the lock of some bucket, since the park/unpark operations
      from the previous section all start with locking some bucket’s
      lock. The intuition is that resizing can simply lock all of the old
      table’s buckets and then allocate a new hashtable and copy the old
      one’s contents into it. Then, while still holding the locks of all
      of the buckets, it can repoint the global hashtable pointer to the
      new table. Then we can release the locks on the old table’s
      buckets. This implies another change: the park/unpark algorithms
      will check if the global hashtable pointer is still the same after
      the bucket lock is locked. Without resizing, the park
      implementation might have looked like:

      
      void ParkingLot::parkConditionally(...)
      {
          Hashtable* hashtable = g_hashtable;     Bucket* bucket = hashtable->buckets[hash % hashtable->size];
          bucket->lock.lock();
          }
      
      

      Resizing means that any hashtable operation begins like this
      instead:

      
      void ParkingLot::parkConditionally(...)
      {
          Bucket* bucket;
          for (;;) {
              Hashtable* hashtable = g_hashtable;
              bucket = hashtable->buckets[hash & hashtable->size];
              bucket->lock.lock();
              if (hashtable == g_hashtable)
                  break;
                              bucket->lock.unlock();
          }
                  }
      
      

      After resizing, we need to leak the old hashtable. We cannot be
      sure after unlocking all of its buckets how many threads are still
      stuck between having loaded the old hashtable pointer and
      attempting to lock a bucket. Threads may be stuck in between any
      two instructions for an indeterminate amount of time due to OS
      scheduling. Worse, a bucket’s lock may have any number of threads
      waiting on it, so we cannot delete the lock. Rather than try to ask
      the OS about the status of all threads in the system to detect when
      it’s safe to delete the old table, we just leak the old hashtables.
      This is fine because of exponential resizing. Let’s say that the
      hashtable started with a size of 1 and resized up to 64. Then we
      will have allocated hashtables of the following sizes:

      
      1 + 2 + 4 + 8 + 16 + 32 + 64
      
      

      This is a geometric series, which converges to 127 (i.e. 64 * 2
      – 1). In general, the amount of memory we will waste due to leaking
      old tables is proportional to the amount of memory used by the
      current table. Somewhat humorously, the ParkingLot
      will record all “leaked” hashtables in a global vector to ensure
      that leak detector tools don’t bother us about these harmless and
      intentional leaks.

      We optimize this a bit further, by having the buckets be
      separate heap-allocated objects. The hashtable just contains
      pointers to buckets, and we reuse buckets across resizings. This
      means that the only thing that we leak are the bucket pointer
      arrays, which are an order of magnitude smaller than the total size
      of all of the buckets. In our implementation, the leak is bounded
      (total amount of leaked memory is bounded by the amount of memory
      we are using) and very small (it’s bounded by the size of the
      pointer array, which is much smaller than the total amount of
      memory used for buckets, which in turn is bounded by the number of
      threads and is much smaller than the total amount of memory that
      threads use for other things like stacks).

      Summary of WTF::ParkingLot

      To summarize, ParkingLot provides parking queues
      keyed by the memory addresses of locks. The memory usage of
      ParkingLot has nothing to do with the number of locks
      – it’s bounded by the number of threads currently parked (which is
      bounded by the number of threads). Using some simple concurrency
      tricks, ParkingLot is able to provide parallelism when
      different threads are queueing on different addresses. See 
      wtf/ParkingLot.h and 
      wtf/ParkingLot.cpp for the full
      implementation.

      WTF::WordLock

      WTF::ParkingLot needs a lock implementation for
      protecting buckets. This shouldn’t be a spinlock because we don’t
      put a bound on the amount of code that may execute while the lock
      is held. ParkingLot will use this lock to synchronize
      the validation in parkConditionally() and
      the callback in unparkOne(). Even though
      those callbacks usually do very little work, we don’t want to place
      strict limits on them. We also need the lock to behave well under
      microcontention and to not take too much memory. This means that we
      need something like WTF::Lock.

      Fortunately, it’s possible to implement that algorithm without a
      ParkingLot if we’re willing to use an entire
      pointer-sized word. This is what 
      WTF::WordLock gives us. It’s less desirable than
      WTF::Lock, since it requires more memory, but it’s
      standalone so that we can use it for all of the locking needs of
      ParkingLot. A WordLock instance just has
      a Atomic<uintptr_t> inside it. There is no other
      overhead except for some small per-thread data structures that get
      created the first time that a thread contends for a lock and get
      destroyed automatically when the thread dies.

      A lock needs three data structures: the atomic state, a queue of
      threads, and a lock to protect the queue. In our
      BargingLock algorithm, the atomic state comprises a
      bit that tells us if the lock is locked and a bit that tells us the
      queue is non-empty. WordLock adapts this algorithm by
      having the atomic state be a pointer to the head of the queue, with
      the two low-order bits of the pointer stolen to represent whether
      the lock is locked and whether the queue is locked. We interpret
      the atomic state as follows:

      
      	The lowest bit is the isLockedBit.

      	The second-lowest bit is the
      isQueueLockedBit.

      	The rest of the bits are a pointer to the head of the queue, or
      null if it is empty.

      

      The queue is represented using ThreadData objects.
      There is one such object per thread. It contains the pointers
      necessary to manage the queue, including a next
      pointer and a tail pointer. We use the convention that
      the head of the queue points to the tail, which obviates the need
      to allocate any other memory for storing a pointer to tail: the
      atomic state just points to head, which gives an O(1) way of
      finding the tail.

      In all other regards, WTF::WordLock follows the
      BargingLock algorithm. Our experiments will show that
      except for space usage, WordLock performs just as well
      as Lock. See 
      wtf/WordLock.h and 
      wtf/WordLock.cpp for the full implementation.

      Performance

      We replaced all of the locks in WebKit with
      WTF::Lock because it was safer than spinlocks (no
      chance of a thread wasting time in a spin loop) and both faster and
      smaller than OS-provided mutexes. This section shows the
      performance implications of this change, including some exploration
      of locking protocols that WebKit does not use but that we either
      discovered by accident or that we’ve heard of others using.

      This section first shows the performance of
      WTF::Lock when running WebKit benchmarks, and then
      shows some microbenchmark results using a bunch of different lock
      variants.

      WebKit Performance With WTF::Lock

      Prior to WTF::Lock, WebKit used a mix of
      OS-provided mutexes and spinlocks. We would guess how important the
      lock was for fast path performance and space and how long the
      critical section was going to be. We would always use OS-provided
      mutexes for critical sections that we thought might be long. We had
      data that suggested that we had picked incorrectly in at least some
      cases: some of those OS-provided mutexes were slowing us down and
      some of the spinlocks would cause sched_yield to show
      up in time profiles. The difficulty of guessing what kind of lock
      to use motivated us to implement WTF::Lock.

      It’s now difficult to revert this change and return to a world
      where we pick different locks for different critical sections, and
      we suspect that using spinlocks is generally not a good idea. If
      some part of the code unexpectedly takes a long time, for example
      due to swapping, then the last thing we want is for other threads
      to start busy-waiting for the lock. We also knew from experience
      that trying to alleviate that program by making spinlocks sometimes
      sleep would only degrade performance in the common case.

      This section sets out to establish that if you know that you
      need an adaptive lock then WTF::Lock is what you want
      to use. We use three benchmarks: JetStream 1.1, Speedometer 1.0, and
      PLT3 (our internal page load time test). All of these benchmarks
      are run in a Mac Pro with two 2.7 GHz 6-Core Xeon E5 CPUs (with
      hyperthreading, so 24 logical CPUs) and 16 GB RAM running El
      Capitan. The “OS Mutex” results are from replacing
      WTF::Lock with a wrapper for
      pthread_mutex_t. The WTF::Lock results
      are the baseline. These numbers are gathered using WebKit r199680
      with r199690
      backported (since it affected performance on this machine).

      JetStream Performance

      
      This chart shows the JetStream score for both OS Mutex and
      WTF::Lock. Higher is better.

      JetStream is a JavaScript benchmark that consists of small to
      medium-sized programs that stress various parts of our JavaScript
      engine. WebKit relies on locks heavily when running JavaScript
      programs. In the most extreme case, each object may have its own
      lock and this lock may be acquired on any property access. This is
      necessary to allow our concurrent compiler to inspect the heap.
      Without locks, those accesses would not be safe. These JetStream
      numbers show that it’s important to have fast locks when running
      JavaScript.

      Speedometer Performance

      
      This chart shows the Speedometer score for both OS Mutex and
      WTF::Lock. Higher is better.

      Speedometer is a JavaScript and DOM benchmark comprised of web
      apps implemented in different web frameworks. It stresses the
      entire engine. We can see that for this realistic test,
      WTF::Lock gives a 5% speed-up.

      PLT3 Performance

      
      This chart shows PLT3 geometric mean page load times. Lower is
      better.

      PLT3 speeds up by 5% if you switch to WTF::Lock.
      Since PLT3 is not entirely dominated by JavaScript, this suggests
      that there are many other locks in WebKit that benefit from being
      fast.

      Summary of WebKit Lock Performance

      WTF::Lock is always a speed-up over
      pthread_mutex_t. It’s also 64x smaller – it uses only
      one byte while pthread_mutex_t uses 64 bytes. Based on
      this data, we are confident that the right choice is to continue
      using WTF::Lock instead of
      pthread_mutex.

      Microbenchmark Performance

      This section explores the performance of various locks on a
      simple microbenchmark that can start any number of threads which
      repeatedly lock a lock and do some small amount of floating point
      math (each loop iteration does one double addition and
      multiplication). We can vary the locking protocol and some
      parameters of the locking protocol (like the amount of spinning it
      will do before parking). This compares WTF::Lock and
      WTF::WordLock to spinlocks and miscellaneous lock
      algorithms that use ParkingLot. This section also
      compares WTF::Lock to 
      std::synchronic and hardware
      transactional memory.

      These benchmarks are run on a MacBook Pro with a 2.6 GHz Intel
      Core i7 with four cores and hyperthreading and 16 GB of RAM running
      El Capitan.

      Microcontention for Various Thread Counts

      
      This chart shows the number of successful lock acquisitions per
      second across all threads as a function of the number of threads.
      This uses a critical section that does one loop iteration while
      holding the lock. Higher is better.

      We use six locking protocols:

      This chart shows that as you scale up the number of threads,
      WTF::Lock can easily hold its own. It’s hard to tell
      how slow that OS mutex and HandoffLock are. In fact,
      for 10 threads they are about 160x slower.

      Notice that for a single thread, the fastest locks are always
      spinlocks. This is because spinlocks do not have to use CAS when
      unlocking. Using CAS when unlocking is necessary for locks that
      have a queue, since you need to check for parked threads at the
      moment that you unlock. Spinlocks don’t do this, so they can just
      store 0 – or whatever the “I’m not locked” value is – into the
      lock’s atomic state.

      It’s also clear that depending on the number of threads
      contending, different locks have very different performance. It
      appears that WTF::Lock is not so great for two or
      three threads.

      Finally, it’s clear that the x86 pause instruction
      is not useful for our spinlocks. 
      Intel shows that it is a speed-up, but we cannot confirm their
      claim.

      Optimizing the Spin Limit of WTF::Lock

      
      This chart shows the number of successful lock acquisitions per
      second across all threads as a function of the spin limit. Higher
      is better. This test uses 4 threads, since for fewer threads the
      spin limit doesn’t matter much, and for more threads the chart
      doesn’t look much different than this. This uses a critical section
      that does one loop iteration while holding the lock.

      We initially picked a spin limit of 40 based on ancient JikesRVM
      experiments. Surprisingly, this chart precisely confirms that 40 is
      still optimal.

      Microcontention With Different Locks

      
      This chart shows the number of successful lock acquisitions per
      second across all threads as a function of the number of threads.
      This uses a critical section that does one loop iteration while
      holding the lock. Higher is better.

      This explores three algorithms:

      
      	
      ThunderLock. This unleashes a thundering herd
      every time it unparks threads.

      	
      CascadeLock. This is based on glibc’s
      lowlevellock algorithm.

      	
      BargingLock. This is like WTF::Lock,
      but more configurable.

      

      We then run each one in two variants, one that is 8-bit and one
      that is 32-bit.

      This plot shows that CascadeLock and
      ThunderLock exhibit wonderful performance for smaller
      numbers of threads. BargingLock and
      ThunderLock exhibit the best performance for many
      threads. This chart suggests that we might have additional
      performance improvements if we try to take the best of
      ThunderLock and CascadeLock and integrate
      them into the WTF::Lock algorithm. On the other hand,
      this microbenchmark is quite extreme and it doesn’t decisively
      favor any of these algorithms. Because of these results, we have a bug
      open about continuing to reconsider our WTF::Lock
      implementation.

      Contention With Different Critical Section Lengths

      
      This chart shows the number of successful lock acquisitions per
      second across all threads as a function of the number of loop
      iterations while the critical section is held. Higher is better.
      This uses 4 threads.

      All previous microbenchmark charts used a very short critical
      section. This shows what happens when the critical section length
      is increased. Unsurprisingly, the performance gap between the OS
      mutex and WTF::Lock gets reduced, but even for long
      critical sections (1000 double multiplies and 1000 double adds),
      WTF::Lock is still almost 2x faster.

      Lock Fairness

      One advantage of OS mutexes is that they guarantee fairness: All
      threads waiting for a lock form a queue, and, when the lock is
      released, the thread at the head of the queue acquires it. It’s
      100% deterministic. While this kind of behavior makes mutexes
      easier to reason about, it reduces throughput because it prevents a
      thread from reacquiring a mutex it just released. It’s common for
      WebKit threads to repeatedly acquire the same lock. This section
      attempts to evaluate the relative fairness of OS mutexes and
      WTF::Lock.

      Our 
      fairness benchmark starts ten threads while a lock is held. It
      waits a bit after starting them to maximize the likelihood that all
      of those threads pile up on the lock’s queue. Then we release the
      lock, and count how many times each thread got to acquire the lock
      during a 100 millisecond run. A FIFO lock will ensure that each
      thread got to acquire the lock the same number of times except for
      an off-by-one step: whenever the 100 millisecond test run finishes,
      some set of threads may have had a chance to do exactly one more
      lock acquisition because they happened to come first in the
      round-robin cycle.

      
      The chart above shows the fairness results for the OS Mutex. As
      expected, it’s completely fair.

      
      WTF::Lock is slightly less fair according to the
      chart above. However, the least lucky WTF::Lock thread
      still got to acquire the lock about 180x more times than any OS
      Mutex thread: thread 8 was the least lucky WTF::Lock
      thread with only 556797 acquisitions, 15% less than the thread 10,
      which was the luckiest. But that’s a huge number of lock
      acquisitions compared to 3010, the best that the OS mutex threads
      could do.

      This is a surprising result. It’s clear that the OS mutex is
      doing exactly what it set out to do: no thread gets to do any more
      work than any other thread. On the other hand,
      WTF::Lock does not guarantee fairness. Analysis of the
      algorithm shows that a thread that has been waiting the longest to
      get the lock may fail to get the lock and be forced to go to the
      end of the queue. But this chart shows that even without having a
      fairness guarantee, the unluckiest thread using
      WTF::Lock got better treatment than any thread using
      the guaranteed-fair mutex. It’s almost as if the OS mutex is not
      actually fair because while thread 1 is served equally to thread 2,
      all 10 threads are underserved relative to a hypothetical thread
      11, which is using a different algorithm. Indeed, we can think of
      thread 11 as being the OS context switch handler.

      Fair algorithms make sense in some contexts, like if all
      critical sections are long and it matters that the longest wait for
      any thread is bounded by the number of threads and the total length
      of their critical sections. But WebKit uses tiny critical sections
      and some of them become contended. The cost of ensuring fairness in
      small critical sections turns out to be too high to be
      practical.

      We have to account for the possibility that the OS mutex is
      slower than WTF::Lock for some reason other than
      fairness. We can test this since we have also implemented 
      HandoffLock, which is a completely fair lock
      implemented using ParkingLot.

      
      The chart above shows the fairness results for
      HandoffLock. It performs almost exactly like the OS
      mutex. This result has some interesting implications. It shows that
      the OS mutex’s performance is likely to be due entirely to its
      deterministic fairness guarantee. It also implies that the extra
      overhead that ParkingLot introduces does not adversely
      affect the speed with which ParkingLot can handoff
      execution from one thread to another.

      Comparison to Other Novel Locks

      The C++ language has a proposed feature called 
      std::synchronic that addresses some of the same
      problems as ParkingLot. It allows users to write their
      own locks, and those locks can fit into a small amount of memory.
      Lock algorithms focus a lot on how to handle contention so as to
      optimize throughput even when multiple threads want to hold the
      same lock. An approach for handling contention that is popular in
      scholarly computer science is 
      transactional memory. If a transactional critical section is
      contended but the contending threads don’t have any races other
      than the race to get the lock (i.e. they access disjoint memory
      except for the lock itself) then these threads will get to run
      concurrently. If a race is detected, some threads will abort and
      retry, possibly reverting to a convention lock algorithm. Modern
      x86 chips support transactional memory via Hardware Lock
      Elision (HLE). WebKit avoids using a single lock to protect
      unrelated data, since this is both awkward (it’s easiest to put a
      tiny WTF::Lock right next to whatever field it
      protects) and suboptimal (it causes pointless contention). In
      WebKit we add locks in order to protect data races, so transactions
      are unlikely to help. This section evaluates the performance of
      these alternatives, with an emphasis on a WebKit-style critical
      section, where racing on the lock implies a race for the same
      underlying data.

      
      This chart shows the number of successful lock acquisitions per
      second across all threads as a function of the number of threads.
      This uses a critical section that does one loop iteration while
      holding the lock. Higher is better.

      To test std::synchronic we 
      implement a lock that follows the “TTAS lock” algorithm in the
      synchronic
      test suite. To test HLE, we 
      implement a basic spinlock wrapped with
      xacquire/xrelease. As this chart
      shows, WTF::Lock is always significantly faster than
      either of these kinds of locks. We suspect that
      std::synchronic performs relatively poorly because it
      requires the analog of ParkingLot::unparkOne() to run
      every time a lock is released, even if nobody is waiting. On the
      other hand, the same features that make
      std::synchronic a bit slower also make its API a lot
      easier to use. We suspect that HLE performs relatively poorly
      because the locks in this benchmark protect a data race. We only
      use locks in WebKit when there is a data race to protect, so
      although this benchmark is unfair to the intended use case of HLE,
      we believe that it’s an appropriate benchmark for simulating how we
      use locks. 
      We aren’t the first to observe that transactional memory isn’t
      great. That post observes that one problem with transactional
      memory is the lack of a killer app, and observes that the industry
      as a whole is missing a concurrency killer app. WebKit uses
      concurrency to dramatically speed up JIT compilation and it uses
      parallelism to dramatically speed up garbage collection, and both
      are possible thanks to fast locks.

      Summary

      We replaced all of WebKit’s locks with our own lock
      implementation, called WTF::Lock. We did this because
      we wanted to aggressively reduce the sizes of our locks while
      increasing overall performance. We also wanted the lock to be
      adaptive, so that threads would not spin when a lock was held for a
      long time. The new lock, called WTF::Lock is
      implemented using a reusable abstraction for parking and queuing
      threads, and that abstraction will come in handy when implementing
      new web
      standards.
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