
 [image: Cover]

Table Of Contents

	San Francisco median home prices hit all-time high in April 2016

	SpaceX lands rocket at sea second time after satellite launch

	Introducing lambda-comments · Jim Pick

	Albert Einstein and Henri Bergson’s Great Showdown About the Nature of Time

	Locking in WebKit

 San Francisco median home prices hit all-time high in April
 2016

 Last week we drilled down into
 the recent decline in SF home prices. Instead of a market
 downturn, we found that the decline was isolated to homes and
 especially condos sold above $3M. Below $3M, prices continued to
 increase and competition was fierce.

 [image: San Francisco Median Home Prices April 2016]

 April 2016 - Back to
 normal/crazy

 At the time of publication, there were 394 single-family homes
 and condos reported sold to the San Francisco MLS in April 2016.
 Their combined median sales price was $1,285,000, which is a
 new all-time high. This was 23% higher than the previous
 month and 6% higher than April 2015. Sales volume remains low: 394
 sold vs 492 in the same period last year, a 23% YOY decline. The
 previous high of $1.26M was in May 2015.

 [image: San Francisco Amount Sold Above Asking April 2016] [image: San Francisco Average Price Per Square Foot April 2016]

 	Single-family homes (60% of total sales) are selling way above
 asking at all price points.

 	
 Home and condos below $1M (30% of total sales) are increasing
 in price/sqft. Above $1M, home values are declining on a price/sqft
 basis.

 	Luxury condo market is weakest with condos over $3M (2% of
 total sales) going for 2.7% below their asking price on average.
 There's very low volume in that range: only 8 condos for over $3M
 in April.

 Interesting times! We'll continue to closely monitor the SF
 markets for any signs of change.

 Data sources: San Francisco
 MLS (dataset available by request). Median home
 prices prior to April 2016 via Paragon RE. Thanks
 to Patrick Carlisle from Paragon for confirming these findings.

 SpaceX lands rocket at sea second time after satellite
 launch

 [image: SpaceX lands rocket at sea 2nd time after satellite launch]

 This photo provided by SpaceX shows the first stage of the
 company's Falcon rocket after it landed on a platform in the
 Atlantic Ocean just off the Florida coast on Friday, May 6, 2016,
 after launching a Japanese communications satellite. (SpaceX via
 AP)
 For the second month in a row, the aerospace upstart SpaceX
 landed a rocket on an ocean platform early Friday, this time
 following the successful launch of a Japanese communications
 satellite.

 A live webcast showed the first-stage booster touching down
 vertically in the pre-dawn darkness atop a barge in the Atlantic,
 just off the Florida coast. The same thing occurred April 8 during
 a space station supply run for NASA. That was the first successful
 landing at sea for SpaceX, which expects to start reusing its
 unmanned Falcon rockets as early as this summer to save money and
 lower costs.

 Because of the high altitude needed for this mission, SpaceX did
 not expect a successful landing. But it was wrong. As the launch
 commentator happily declared, "The Falcon has landed."

 SpaceX founder and chief executive Elon Musk was even more
 exuberant. "Woohoo!!" he exclaimed in bold letters via Twitter.

 "May need to increase size of rocket storage hangar," he added
 in a tweet.

 Musk said this was a three-engine burn for the booster's return,
 "so triple deceleration from the last flight." Before liftoff from
 Cape Canaveral, Florida, he put the chances of a successful
 touchdown at "maybe even" because the rocket was coming in faster
 and hotter than last time.

 [image: SpaceX lands rocket at sea 2nd time after satellite launch]

 This photo provided by SpaceX shows the first stage of the
 company's Falcon rocket after it landed on a platform in the
 Atlantic Ocean just off the Florida coast on Friday, May 6, 2016,
 after launching a Japanese communications satellite. (SpaceX via
 AP)
 Musk contends rocket reusability is key to shaving launch costs
 and making space more accessible.

 SpaceX is the only company to recover a rocket following an
 orbital launch. It achieved its first booster landing—on solid
 ground at Cape Canaveral Air Force Station—in December. A landing
 at sea proved more elusive and required several tries.

 Blue Origin, led by another wealthy high-tech entrepreneur, Jeff
 Bezos of Amazon.com, has landed and even reflown its booster
 rockets, but those did not put anything into orbit.

 [image: SpaceX lands rocket at sea 2nd time after satellite launch]

 A SpaceX Falcon 9 rocket lights up the sky during a launch from the
 Cape Canaveral Air Force Station's Launch complex 40 early Friday
 morning, May 6, 2016, in Fla . Aboard is the JCSAT-14
 communications satellite. SpaceX has done it again. …more
 Following last month's landing, Musk said he plans to fly that
 booster again, possibly as soon as June. The first recovered
 booster, from December, will grace the entrance of SpaceX
 headquarters in Hawthorne, California.

 Already in the delivery business for NASA, SpaceX hopes to start
 transporting U.S. astronauts to the International Space Station by
 the end of next year in the company's next-generation Dragon
 capsules. But its ultimate goal is Mars.

 In a groundbreaking announcement last week, Musk said his
 company will attempt to send a Red Dragon to Mars in 2018—and
 actually land on the red planet. His ambition is to establish a
 city on Mars.

 He also runs Tesla Motors, the electric car company.

 [image: SpaceX lands rocket at sea 2nd time after satellite launch]

 SpaceX's Falcon 9 rocket launches the JCSAT-14 communications
 satellite at Cape Canaveral, Fla, early Friday, May 6, 2016. The
 Falcon 9 first stage also landed on a droneship while the second
 stage continued on, delivering the spacecraft to …more

 [image: SpaceX lands rocket at sea 2nd time after satellite launch]

 SpaceX's Falcon 9 rocket launches the JCSAT-14 communications
 satellite at Cape Canaveral, Fla, early Friday, May 6, 2016. The
 Falcon 9 first stage also landed on a droneship while the second
 stage continued on, delivering the spacecraft to …more
 [image:] Explore further:
 SpaceX to launch rocket Dec 19, six months after blast

 More information: SpaceX: www.spacex.com/

 Introducing lambda-comments · Jim Pick

 I’d like to introduce a new
 open-source project which I hope will be useful to people who would
 like to add comments to their blog or website.

 The project is called “lambda-comments”, and
 you can find the project page on
 GitHub.

 Static Site Generators

 There are many ways to build a blog. WordPress is by far the most popular
 open-source blogging software. Many people choose to not build
 their own blog and instead publish their writings on a platform
 such as Medium.

 For those that like to maintain control, an increasingly popular
 alternative is to use a
 static site generator such as Jekyll, and host the site for free using
 a service such as GitHub
 Pages.

 This blog is currently being built using a Go-based static site generator called
 Hugo and it is hosted on Aerobatic.

 Check out StaticGen for
 a nice list of static site generator projects.

 As for hosting companies, you have a lot of easy and cheap
 options.
 Amazon S3 is inexpensive and gives you a lot of control.
 Surge is a popular service (run by
 friends of mine) and they’ve got a great CLI tool that makes
 publishing almost instantaneous. People think of Firebase from Google as a real-time
 database service, but they’ve got a great static website publishing
 system as well. Netlify
 and Aerobatic are advanced
 solutions that can automatically rebuild your static site on their
 servers, separate assets out onto a global CDN, and they offer lots
 of other nice features that web consulting shops and agencies would
 find useful.

 If you are using WordPress,
 there’s a database always running behind the scenes and it has
 support for self-hosted comments built-in.

 Static sites, on the other hand, are not rendered from a
 database. So many blogs hosted on static sites do not have
 comments. Often this is just a conscious decision by the blog
 author so that they don’t have to deal with malicious
 user-submitted content.

 Many bloggers decide to have conversations off of their blog –
 and in social media instead. There are usually more people
 interacting with Twitter, Facebook, LinkedIn or Hacker News at any particular
 moment. Social media conversations tend to get lost in the noise
 over the time, whereas blog comments will always be discoverable
 via search engines for as long as the blog post exists.

 Most static sites that do have comments use a hosted service.
 Disqus is the
 most popular hosted service, but there are many others. Disqus
 is free and it has many nice features. It’s easy to integrate into
 a blog – simply drop their html snippet into the right template,
 and their JavaScript loads and shows the comments and comment form
 on your pages.

 However, not everybody wants to use a hosted service provided by
 a third-party. Privacy and data sharing are important issues on the
 modern Internet. If you haven’t tried out Brett Gaylor’s “Do Not Track” online
 documentary, do it now!

 Hosted commenting services do have a lot of features, and many
 offer some degree of configurability and customization. But no
 proprietary service can offer the amount of flexibility that a
 self-hosted open-source solution can provide.

 Self-hosting means that the data is on your own servers (or
 servers you rent in the cloud). You don’t have to worry about the
 hosted service being “sunsetted”, the “platform risk” of the
 service being radically changed with short notice, or having the
 formerly free service converted into a paid service when the VC
 money dries up. If you compare, you’ll find that the “terms of service” for a
 cloud provider such as AWS are quite different from the terms for a
 special-purpose
 comment hosting service. (No, I haven’t read them)

 For the truly paranoid, the national security spooks in various
 countries are going to focus less attention on small self-hosted
 systems than on the big services they can easily subpoena for bulk
 data collection. Dictatorships will find that it’s more effort to
 censor a bunch of individual websites and APIs than to just block
 the big ones that are ‘inconvenient’. And if you are truly trying
 to hide something from somebody, there’s nothing stopping you from
 running your self-hosted comments on Tor .

 If you Google for ‘open
 source disqus alternatives’, you’ll find some great-looking
 projects such as Isso and
 HashOver. They
 can be installed on a Linux virtual machine running in the cloud -
 a $5/month virtual machine should do the trick.

 But $5/month is still a pretty pricey solution for comments on a
 static site, which might be hosted entirely for free otherwise.
 Plus, there are servers to maintain, and system administration
 skills to master, and security patches to continually apply. Take
 this blog for example, I typically only write a post every month or
 so, and I don’t expect that there’s going to be a lot of people
 leaving comments. Ideally, the cost per comment should be low.

 Last year, Amazon announced AWS Lambda, which
 allows you to host code in the cloud that can run in response to
 events. If the code only needs to run for 30 seconds to respond to
 an event, then you only have to pay for 30 seconds of compute time.
 It’s a perfect model for a self-hosted blog comment system.

 So that’s what I am introducing today. lambda-comments is
 an open-source self-hosted blog comment system that can be deployed
 to Amazon, and it hopefully will cost less than a dollar a month to
 operate.

 Spam and
 Abuse

 I’m old enough to remember when spam and abuse was not a big
 problem on the Internet. However, these days, it’s an awful
 mess.

 In order to keep the initial implementation simple and to
 encourage people to leave comments without a lot of friction,
 lambda-comments allows for anonymous commenting. It also optionally
 allows people to leave their name and to link to their own or other
 websites.

 In this very first implementation, there is no attempt to try to
 verify that people are who they say they are, so it is wide open to
 the abuse vector of somebody attempting to impersonate somebody
 else. For a lighter traffic “gentle” community, this is probably
 not a problem, and can be easily policed. I’m hoping this blog fits
 that model. For some other types of higher-traffic, open
 communities, this design decision would be entirely wrong, and a
 more strict solution will need to be built.

 Right now, lambda-comments can be configured to use Akismet from Automattic (the WordPress
 company) as a first line-of-defense against blog spam. As there is
 no moderation queue yet, if the comment is flagged as spam, it just
 won’t be accepted. In the future, I’d like to implement a
 moderation queue so that comments that are falsely flagged as spam
 can be accepted.

 Lastly, if you want to read a great article about commenting
 systems and abuse, go read “The
 dark side of Guardian comments”.

 Try it
 out!

 This blog post is the very first time I’ve deployed the
 commenting system ‘in-the-wild’. Try leaving a comment below!

 Better yet, see if you can set it up yourself
 on your own AWS account and on your own blog. It’s a little bit
 complicated, but it should be do-able.

 I’d love to hear any success stories (or failure reports) in the
 comments below! See if you can be the first to get it working!

 Also, if you like it, please be sure to give the project a
 GitHub star!

 Portland IndieWeb Summit 2016

 In other news, I bought a ticket for the IndieWeb Summit in Portland, Oregon
 on June 3-5, 2016. So if you’re going to be there, I’m hoping to
 show off the project. Also, I’m always available in Vancouver,
 Canada, and I’m frequently in Seattle. I’d love to meet for coffee
 or beer.

 And be sure to check out my current contract availability by
 clicking the ‘+’ in the upper left corner of the page!

 Albert Einstein and Henri Bergson’s Great Showdown About the
 Nature of Time

 On April 6, 1922, Einstein met a
 man he would never forget. He was one of the most celebrated
 philosophers of the century, widely known for espousing a theory of
 time that explained what clocks did not: memories, premonitions,
 expectations, and anticipations. Thanks to him, we now know that to
 act on the future one needs to start by changing the past. Why does
 one thing not always lead to the next? The meeting had been planned
 as a cordial and scholarly event. It was anything but that. The
 physicist and the philosopher clashed, each defending opposing,
 even irreconcilable, ways of understanding time. At the Société
 française de philosophie—one of the most venerable institutions in
 France—they confronted each other under the eyes of a select group
 of intellectuals. The “dialogue between the greatest philosopher
 and the greatest physicist of the 20th century” was dutifully
 written down.1 It was a script fit for the theater. The
 meeting, and the words they uttered, would be discussed for the
 rest of the century.

 The philosopher’s name was Henri Bergson. In the early decades
 of the century, his fame, prestige, and influence surpassed that of
 the physicist—who, in contrast, is so well known today. Bergson was
 compared to Socrates, Copernicus, Kant, Simón Bolívar, and even Don
 Juan. The philosopher John Dewey claimed that “no philosophic
 problem will ever exhibit just the same face and aspect that it
 presented before Professor Bergson.” William James, the Harvard
 professor and famed psychologist, described Bergson’s Creative
 Evolution (1907) as “a true miracle,” marking the “beginning of
 a new era.” For James, Matter and Memory (1896) created “a
 sort of Copernican revolution as much as Berkeley’s
 Principles or Kant’s Critique did.” The philosopher
 Jean Wahl once said that “if one had to name the four great
 philosophers one could say: Socrates, Plato—taking them
 together—Descartes, Kant, and Bergson.” The philosopher and
 historian of philosophy Étienne Gilson categorically claimed that
 the first third of the 20th century was “the age of Bergson.” He
 was simultaneously considered “the greatest thinker in the world”
 and “the most dangerous man in the world.” Many of his followers
 embarked on “mystical pilgrimages” to his summer home in
 Saint-Cergue, Switzerland.

 [image: Canales_BREAKER_Einstein]Albert
 EinsteinFred Stein Archive /
 Getty
 Bergson’s reputation was at risk after he confronted the
 younger man. But so was Einstein’s. The criticisms leveled against
 the physicist were immediately damaging. When the Nobel Prize was
 awarded to Einstein a few months later, it was not given for the
 theory that had made the physicist famous: relativity. Instead, it
 was given “for his discovery of the law of the photoelectric
 effect”—an area of science that hardly jolted the public’s
 imagination to the degree that relativity did. The reasons behind
 the decision to focus on work other than relativity were directly
 traced to what Bergson said that day in Paris.

 The chairman for the Nobel Committee for Physics explained that
 although “most discussion centers on his theory of relativity,” it
 did not merit the prize. Why not? The reasons were surely varied
 and complex, but the culprit mentioned that evening was clear: “It
 will be no secret that the famous philosopher Bergson in Paris has
 challenged this theory.” Bergson had shown that relativity
 “pertains to epistemology” rather than to physics—and so it “has
 therefore been the subject of lively debate in philosophical
 circles.”2

 Einstein laid down the gauntlet by considering as valid only two
 ways of understanding time: physical and psychological.

 [image: Sapolsky_TH-F1]

 Also in
 Philosophy
 By Stuart Firestein

 “Ever tried. Ever failed. No matter. Try again. Fail again. Fail
 better.” —Samuel Beckett I wrote this after being reminded, by
 English novelist Marina Lewycka, of this quote from one of Samuel
 Beckett’s lesser known, later short stories....READ
 MORE

 The explanation that day surely reminded Einstein of the
 previous spring’s events in Paris. Clearly, he had provoked a
 controversy. These were the consequences. He had been unable to
 convince many thinkers of the value of his definition of time,
 especially when his theory was compared against that of the eminent
 philosopher. In his acceptance speech, Einstein remained stubborn.
 He delivered a lecture that was not about the photoelectric effect,
 for which he had been officially granted the prize, but about
 relativity—the work that had made him a star worldwide but which
 was now in question.

 The invocation of Bergson’s name by the presenter of the Nobel
 Prize was a spectacular triumph for the philosopher who had lived
 his life and made an illustrious career by showing how time should
 not be understood exclusively through the lens of science. It had
 to be understood, he persistently and consistently insisted,
 philosophically. Why did two of the greatest minds of modern times
 disagree so starkly, dividing intellectual communities for years to
 come?

 On that “truly historic” day when
 the two met, Bergson was unwillingly dragged into a discussion he
 had explicitly intended to avoid.3 The philosopher was
 by then much more senior than Einstein. He spoke for about half an
 hour. He had been prodded by an impertinent colleague, who had been
 in turn pressured to speak by the event organizer. “We are more
 Einsteinian than you, Monsieur Einstein,” he said. His objections
 would be heard far and wide. “Bergson was supposed by all of us to
 be dead,” explained the writer and artist Wyndham Lewis, “but
 Relativity, oddly enough at first sight, has resuscitated
 him.”4

 The physicist responded in less than a minute—including in his
 answer one damning and frequently cited sentence: “Il n’y a donc
 pas un temps des philosophes.” Einstein’s reply—stating that
 the time of the philosophers did not exist—was incendiary.

 What Einstein said next that evening was even more
 controversial: “There remains only a psychological time that
 differs from the physicist’s.” At that very moment, Einstein laid
 down the gauntlet by considering as valid only two ways of
 understanding time: physical and psychological. These two ways of
 examining time, although scandalous in the particular context that
 Einstein uttered them, had a long history. With Einstein, they
 would have an even longer one—becoming two dominant prisms
 inflecting most investigations into the nature of time during the
 20th century.

 The simple, dualistic perspective on time advocated by Einstein
 appalled Bergson. The philosopher responded by writing a whole book
 dedicated to confronting Einstein. His theory is “a metaphysics
 grafted upon science, it is not science,” he wrote. Einstein’s and
 Bergson’s contributions appeared to their contemporaries forcefully
 at odds, representing two competing strands of modern times.
 Bergson was associated with metaphysics, antirationalism, and
 vitalism, the idea that life permeates everything. Einstein with
 their opposites: with physics, rationality, and the idea that the
 universe (and our knowledge of it) could stand just as well without
 us. Einstein has since been crowned as the man whose work took
 “sensorial perception and analytical principles as sources of
 knowledge,” nothing more and nothing less.

 Einstein’s theory of time, argued the philosopher, prevented us
 from realizing that “the future is in reality open, unpredictable,
 and indeterminate.”

 The theory of relativity broke with classical physics in three
 main respects: first, it redefined concepts of time and space by
 claiming that they were no longer universal; second, it showed that
 time and space were completely related; and third, the theory did
 away with the concept of the ether, a substance that allegedly
 filled empty space and that scientists hoped would provide a stable
 background to both the universe and their theories of classical
 mechanics.

 In combination, these three insights were related to a
 startlingly new effect, time dilation, which profoundly shocked
 scientists and the general public. In colloquial terms, scientists
 often described it by saying that time slowed down at fast
 velocities and, even more dramatically, that it completely stopped
 at the speed of light. If two clocks were set at the same time with
 respect to each other, and if one of them separated from the other
 traveling at a constant speed, they would mark different times,
 depending on their respective velocities. Although observers
 traveling with the clocks would be unable to notice any changes in
 their own system, one of them was slow in comparison to the other.
 Researchers calculated a striking difference between “time1” as
 measured by a stationary clock when compared to “time2” as measured
 by a clock in motion. Which of these referred to time? According to
 Einstein, both—that is, all frames of references should be treated
 as equal. Both quantities referred equally to time. Had Einstein
 found a way to stop time?

 [image: Canales_BR-Nobel.]It’s all
 relative: The 1921 Nobel committee awarded Einstein the
 Prize for “his services to Theoretical Physics, and especially for
 his discovery of the law of the photoelectric effect.” Relativity
 was mentioned as a theory that had been challenged by
 Bergson.Albert Einstein Archives /
 Princeton University Press
 Relativity scientists argued that our common conception of
 “simultaneity” needed to be upgraded: Two events that seemed to
 occur simultaneously according to one observer were not necessarily
 simultaneous for another one. This effect was connected to other
 aspects of the theory: that the speed of light (in vacuo and in the
 absence of a gravitational field) was constant. The velocity of
 most physical objects could successively be increased by
 piggy-backing on other fast-moving objects.

 For example, a train traveling at a certain speed could be made
 to travel faster if placed on top of another fast train. While the
 first train could be traveling at, say, 50 mph, the one on top
 would go at 100 mph, the next one at 150 mph, and so on. Not so
 with light waves. The speed of light, in Einstein’s account of
 special relativity, was not only constant; it was an unsurpassable
 velocity. This simple fact led scientists not only to abandon the
 concept of absolute simultaneity, it also led them to a host of
 additional paradoxical effects, including time dilation.

 Bergson found Einstein’s definition of time in terms of clocks
 completely aberrant. The philosopher did not understand why one
 would opt to describe the timing of a significant event, such as
 the arrival of a train, in terms of how that event matched against
 a watch. He did not understand why Einstein tried to establish this
 particular procedure as a privileged way to determine simultaneity.
 Bergson searched for a more basic definition of simultaneity, one
 that would not stop at the watch but that would explain why clocks
 were used in the first place. If this, much more basic, conception
 of simultaneity did not exist, then “clocks would not serve any
 purpose.” “Nobody would fabricate them, or at least nobody would
 buy them,” he argued. Yes, clocks were bought “to know what time it
 is,” admitted Bergson. But “knowing what time it is” presupposed
 that the correspondence between the clock and an “event that is
 happening” was meaningful for the person involved so that it
 commanded their attention. That certain correspondences between
 events could be significant for us, while most others were not,
 explained our basic sense of simultaneity and the widespread use of
 clocks. Clocks, by themselves, could not explain either
 simultaneity or time, he argued.

 If a sense of simultaneity more basic than that revealed by
 matching an event against a clock hand did not exist, clocks would
 serve no meaningful purpose:

 They would be bits of machinery with which we would amuse
 ourselves by comparing them with one another; they would not be
 employed in classifying events; in short, they would exist for
 their own sake and not serve us. They would lose their raison
 d’être for the theoretician of relativity as for everybody
 else, for he too calls them in only to designate the time of an
 event.

 The entire force of Einstein’s work, argued Bergson, was due to
 how it functioned as a “sign” that appealed to a natural and
 intuitive concept of simultaneity. “It is only because” Einstein’s
 conception “helps us recognize this natural simultaneity, because
 it is its sign, and because it can be converted into intuitive
 simultaneity, that you call it simultaneity,” he
 explained.5 Einstein’s work was so revolutionary and so
 shocking only because our natural, intuitive notion of simultaneity
 remained strong. By negating it, it could not help but refer back
 to it, just like a sign referred to its object.

 Bergson had been thinking about clocks for years. He agreed that
 clocks helped note simultaneities, but he did not think that our
 understanding of time could be based solely on them. He had already
 thought about this option, back in 1889, and had quickly discounted
 it: “When our eyes follow on the face of a clock, the movement of
 the needle that corresponds to the oscillations of the pendulum, I
 do not measure duration, as one would think; I simply count
 simultaneities, which is quite different.”6 Something
 different, something novel, something important, something outside
 of the watch itself needed to be included in our understanding of
 time. Only that could explain why we attributed to clocks such
 power: Why we bought them, why we used them, and why we invented
 them in the first place.

 Psychological conceptions of time, Einstein insisted, were not
 only simply in error, they just did not correspond to anything
 concrete.

 Our perception of the world was not, as commonly thought of,
 merely contemplative and disinterested, rather it was already
 shaped by our memories. Both were defined by our sense of what we
 could act on. Bergson warned his readers that unless they
 acknowledged the active role played by memories, they would
 inevitably come back to haunt them: “But if the difference between
 perception and memory is abolished ... we become unable to really
 distinguish the past from the present, that is, from that which is
 acting.” The distinction between the past, the present, and the
 future was determined physically, physiologically, and
 psychologically.

 Einstein’s theory of time, argued the philosopher, was
 particularly dangerous because of how it treated “duration as a
 deficiency.” It prevented us from realizing that “the future is in
 reality open, unpredictable, and indeterminate.” It eliminated real
 time; that is, “what is most positive in the world.”

 During the debate, Einstein explicitly stated what he held to be
 the purpose of philosophy and why it should not play a role at all
 with respect to time. In the face of his contradictor, he gave to
 philosophy a very limited role. He proceeded to explain himself. He
 mentioned two common ways of thinking about time, psychological and
 physical. Psychological time was the time perceived by a person,
 while physical time was time as measured by a scientific
 instrument, such as a clock. Time as measured by an instrument was
 often different from time perceived by a person. Factors such as
 boredom, impatience, or simple psychological changes affected
 psychological perceptions of time. With the spread of timekeeping
 devices, the difference between time felt and time measured became
 increasingly noted. We know, for example by reading the diary of
 Franz Kafka, that in intimate accounts of that period, an “inner
 clock” often seemed to disagree from an “outer one.”

 But in most cases, physical and psychological conceptions of
 time did not have to differ too much. Most people could estimate
 time in a manner that accorded pretty well with that of a clock,
 determining very precisely the time for breakfast, lunch, and
 dinnertime. Most people could also judge if two events were
 simultaneous in a way that accorded pretty well with simultaneity
 as measured by instruments. But the opposite was true when dealing
 with very fast events. In these cases (such as during the finish of
 a horse race), the deficiency of perceptions of simultaneity when
 compared to simultaneity as determined by an instrument was clear;
 these determinations differed significantly from those determined
 with instrumental aides. In a universe marked by events occurring
 close to the speed of light, the difference between the two was
 extreme.

 According to Einstein, philosophy had been used to explain the
 relation between psychology and physics. “The time of the
 philosopher, I believe, is a psychological and physical time at the
 same time,” he explained in Paris. But relativity, by focusing on
 very fast phenomena, had shown just how off-the-mark psychological
 perceptions of time really were.

 Psychological conceptions of time, Einstein insisted, were not
 only simply in error, they just did not correspond to anything
 concrete. “These are nothing more than mental constructs, logical
 entities.” Because of the enormous speed of light, humans had
 “instinctively” generalized their conception of simultaneity and
 mistakenly applied it to the rest of the universe. Einstein’s
 theory corrected this mistaken generalization. Instead of believing
 in an overlapping area between psychological and physical
 conceptions of time (where both were important although one was
 admittedly less accurate than the other), he argued that they were
 really two distinct concepts: a mental assessment (the
 psychological one) that was wholly inadequate when compared to the
 “objective” concept: physical time.

 Bergson and Einstein accepted that an essential difference
 existed between psychological and physical conceptions of time, yet
 they made different deductions from this. For Einstein, this led
 him to conclude that “the time of the philosophers does not exist,
 there remains only a psychological time that differs from the
 physicist’s.”7 For Bergson this lesson—that
 psychological and physical assessments of time were different—made,
 on the contrary, the philosopher’s task even more interesting,
 especially because no one, not even physicists, could avoid the
 problem of relating time back to human affairs.

 [image: Canales_BREAKER_Bergson]Henri
 Bergsonullstein bild / Getty
 In the years that followed, Bergson
 was largely perceived to have lost the debate against the younger
 physicist. The scientist’s views on time came to dominate most
 learned discussions on the topic, keeping in abeyance not only
 Bergson’s but many other artistic and literary approaches, by
 relegating them to a position of secondary, auxiliary importance.
 For many, Bergson’s defeat represented a victory of “rationality”
 against “intuition.” It marked a moment when intellectuals were no
 longer able to keep up with revolutions in science due to its
 increasing complexity. Thus began “the story of the setback, after
 a period of unprecedented success, of Bergson’s philosophy of
 absolute time—unquestionably under the impact of relativity.” Most
 important, then began the period when the relevance of philosophy
 declined in the face of the rising influence of science.

 Biographers who write about Einstein’s life and work rarely
 mention Bergson. One exception, a book written by a colleague,
 paints a picture of eventual rapprochement between the two
 men.8 But other evidence shows just how divisive their
 encounter was. A few years before their deaths, Bergson wrote about
 Einstein, and Einstein mentioned Bergson one last time. They
 underlined—once again—just how wrong the perspective of the other
 remained. While the debate was for the most part removed from
 Einstein’s legacy, it was periodically brought up by many of
 Bergson’s followers. The simple act of reviving the discussion that
 took place that day in April 1922 was not a matter that could be
 taken lightly. Not only is the incident itself divisive—its
 relevance for history is still contested.

 Jimena Canales is a professor of history at the University of
 Illinois at Urbana who writes about the history of science and
 technology.

 References

 1. Cariou, M. “Dialogue” Bergson et Bachelard Presses
 Universitaires de France, Paris (1995).

 2. Arrhenius, S. “Presentation Speech,” 10 December 1922 in
 Nobel Lectures in Physics (1901-1921) World Scientific,
 Singapore (1998).

 3. Benrubi, I. Souvenirs sur Henri Bergson Neuchâtel:
 Delchaux & Niestlé, Paris (1942).

 4. Lewis, W. Time and Western Man Gingko Press, Berkeley,
 CA (1993).

 5. Bergson, H. Durée et SimultanéitéClinamen Press
 Ltd., Manchester, United Kingdom (1922).

 6. Bergson, H. Essai sur les Données Immédiates de la
 Conscience George Allen & Unwin Ltd., London (1889).

 7. Ushenko, P.A. Einstein’s influence on contemporary
 philosophy. In Schilpp, P.A. (Ed.), Albert Einstein:
 Philosopher-Scientist Open Court, Chicago (1949).

 8. Pais, A. Subtle is the Lord…”: The Science and the Life of
 Albert Einstein Oxford University Press, New York, NY
 (1982).

 Excerpted from The Physicist and the Philosopher:
 Einstein, Bergson, and the Debate That Changed Our Understanding of
 Time by Jimena Canales © 2015 by Princeton University Press.
 Reprinted by permission.

 [bookmark: comment]

 Locking in WebKit

 Back in August
 2015 we replaced all spinlocks and
 OS-provided mutexes in WebKit with the new
 WTF::Lock (WTF stands for Web Template Framework).
 We also replaced all OS-provided condition variables with
 WTF::Condition. These new primitives have some
 cool properties:

 	WTF::Lock and WTF::Condition only
 require one byte of storage each. WTF::Lock only needs
 two bits in that byte. The small size encourages using huge numbers
 of very fine-grained locks. OS mutexes often require 64 bytes or
 more. The small size of WTF::Lock means that there’s
 rarely an excuse for not having one, or even multiple, fine-grained
 locks in any object that has things that need to be
 synchronized.

 	WTF::Lock is super fast in the case that matters
 most: uncontended lock acquisition. Parallel algorithms tend to
 avoid contention by having many fine-grained locks. This means that
 a mature parallel algorithm will have many uncontended lock
 acquisitions – that is, calls to lock() when the lock
 is not held, and calls to unlock() when nobody is
 waiting in line. Similarly, WTF::Condition optimizes
 for the common case of calling notify when no threads
 are waiting.

 	WTF::Lock is fast under microcontention. A
 microcontended lock is one that is contended and the critical
 section is short. This means that shortly after any failing lock
 attempt, the lock will become available again since no thread will
 hold the lock for long. This is the most common kind of contention
 in parallel code, since it’s common to go to great pains to do very
 little work while holding a lock.

 	WTF::Lock doesn’t waste CPU cycles when a lock is
 held for a long time. WTF::Lock is adaptive:
 it changes its strategy for how to wait for the lock to become
 available based on how long it has been trying. If the lock doesn’t
 become available promptly, WTF::Lock will suspend the
 calling thread until the lock becomes available.

 Compared to OS-provided locks like pthread_mutex,
 WTF::Lock is 64 times smaller and up to 180 times
 faster. Compared to OS-provided condition variables like
 pthread_cond, WTF::Condition is 64 times
 smaller. Using WTF::Lock instead of
 pthread_mutex means that WebKit is 10% faster on
 JetStream, 5%
 faster on Speedometer, and 5%
 faster on our page loading test.

 Making WTF::Lock and WTF::Condition
 fit in one byte is not easy and the technique behind this has
 multiple layers. Lock and Condition
 offload all thread queueing and suspending functionality to

 WTF::ParkingLot, which manages thread queues keyed
 by the addresses of locks. The design of ParkingLot is
 inspired by futexes.
 ParkingLot is a portable user-level implementation of
 the core futex API. ParkingLot also needs fast locks,
 so we built it its own lock called
 WTF::WordLock.

 This post starts by describing some background on locking. Then
 we describe the ParkingLot abstraction and how we use
 this to build WTF::Lock and
 WTF::Condition. This section also shows some alternate
 locking algorithms on top of ParkingLot. Then we
 describe how ParkingLot and WordLock are
 implemented, hopefully in enough detail to allow for meaningful
 scrutiny. The post concludes with some performance data, including
 comparisons to a bunch of lock algorithms.

 Background

 This section describes some background about locks. This
 includes the atomic operations that we use to implement locks as
 well as some classic algorithms like spinlocks and adaptive locks.
 This section also tries to give appropriate shout-outs to other
 lock implementations.

 Atomic Operations

 CPUs and programming languages provide few guarantees about the
 way that memory accesses interact with each other when executed
 concurrently, since the expectation is that programmers will
 prevent concurrent accesses to the same memory by guarding them
 with locks. But if you’re like me and you like to implement your
 own locks, you’ll want some lower-level primitives that do have
 strong guarantees.

 C++ provides std::atomic
 for this purpose. You can use it to wrap a primitive type (like
 char, int, or a pointer type) with some
 atomicity guarantees. Provided you stick to the strongest memory
 ordering (seq_cst), you can be sure that the
 concurrent executions of std::atomic operations will
 behave as if they were executed sequentially. This makes it
 possible to consider whether an algorithm is sound even when run
 concurrently by envisioning all of the possible ways that its
 various atomic operations could interleave.

 In WebKit, we use our own wrapper called
 WTF::Atomic. It’s a stripped-down version of what
 std::atomic provides. We’ll just consider three of its
 atomic methods: T load(), store(T), and
 bool compareExchangeWeak(T expected, T desired).

 Load and store are self-explanatory. The interesting one is
 compareExchangeWeak, which implements the atomic CAS
 (compare-and-swap) operation. This is a CPU primitive that can be
 thought of as running the following pseudocode atomically:

 bool CAS(T* pointer, T expected, T desired)
 {
 if (*pointer != expected)
 return false;
 *pointer = desired;
 return true;
 }

 This method is implemented in terms of
 std::atomic::compare_exchange_weak, which is
 implemented in terms of the lock; cmpxchg instruction
 on x86 or in terms of ldrex and strex on
 ARM. This form of CAS is called weak because we allow it
 to spuriously do nothing and return false. The opposite is not true
 – if the CAS returns true, then it must be that during its atomic
 execution, it saw *pointer being equal to
 expected and then it changed it to
 desired.

 Spinlocks

 Armed with WTF::Atomic, we can implement the
 simplest kind of lock, called a spinlock. Here’s what it
 looks like:

 class Spinlock {
 public:
 Spinlock()
 {
 m_isLocked.store(false);
 }
 void lock()
 {
 while (!m_isLocked.compareExchangeWeak(false, true)) { }
 }
 void unlock()
 {
 m_isLocked.store(false);
 }
 private:
 Atomic<bool> m_isLocked;
 };

 This works because the only way that lock() can
 succeed is if compareExchangeWeak returns true. If it
 returns true, then it must be that this thread observed
 m_isLocked being false and then instantly flipped it
 to true before any other thread could also see that it had been
 false. Therefore, no other thread could be holding a lock. Either
 no other thread is calling lock() at all, or their
 calls to lock() are still in the while
 loop because compareExchangeWeak is continuing to
 return false.

 Adaptive Locks

 Adaptive locks spin only for a little bit and then
 suspend the current thread until some other thread calls
 unlock(). This guarantees that if a thread has to wait
 for a lock for a long time, it will do so quietly. This is a
 desirable guarantee for conserving CPU time and power.

 By contrast, spinlocks can only handle contention by spinning.
 The simplest spinlocks will make contending threads appear to be
 very busy and so the OS will make sure to schedule them. This will
 waste tons of power and starve other threads that may really be
 able to do useful work. A simple solution would be to make the
 spinlock sleep – maybe for a millisecond – in between CAS attempts.
 This
 turns out to hurt performance on real code because it postpones
 progress when the lock becomes available during the sleep interval.
 Also, sleeping doesn’t completely solve the problem of inefficiency
 when spinning. WebKit has some locks that may be held for a long
 time. For example, the lock used to control the interleaving
 between compiler threads and the garbage collector is usually
 uncontended but may sometimes be held, and contended, for the
 entire time that it takes to collect the JS heap or the entire time
 that it takes to compile some function. In the most extreme case, a
 lock may protect blocking IO. That could happen unexpectedly, for
 example if a page fault on an innocent-looking load leads to
 swapping. Some critical sections can take a while and we don’t want
 contending threads to poll during that time, even if it’s only
 1KHz.

 There’s no good way to make spinning efficient. If we increase
 the delay between CAS attempts then we’re just increasing the delay
 between when the lock gets unlocked and when a contending thread
 can get it. If we decrease the delay, the lock becomes less
 efficient. We want a locking algorithm that ensures that if
 spinning doesn’t quickly give us the lock, our thread will quietly
 wait until exactly the moment when the lock is released. This is
 what adaptive locks try to do.

 The kinds of adaptive locks that we will implement can be split
 into two separate data structures:

 	Some small, atomic field in memory that summarizes the lock’s
 state. It can answer questions like, “does anyone hold the lock?”
 and “is anyone waiting to get the lock?” We will call this the
 atomic state.

 	A queue of threads that are waiting to get the lock, and a
 mechanism for suspending and resuming those threads. The queue must
 have its own synchronization primitives and some way to be kept in
 sync with the atomic state. We say parking to mean
 enqueuing a thread and suspending it. We say unparking to
 mean dequeuing a thread and resuming it.

 WTF::Lock is WebKit’s implementation of an adaptive
 lock, optimized for the things that we care about most: low space
 usage and a great fast path for uncontended lock acquisition. The
 lock object contains only the atomic state, while the queue is
 created on-demand inside the ParkingLot. This allows
 our locks to only require two bits. Like other adaptive locks,
 WTF::Lock provides a guarantee that if a thread has to
 wait a long time for a lock, it will do so quietly.

 Related Work

 If you know that you need an adaptive lock, you can be sure that
 the mutex implementation on modern OSes will safely adapt to
 contention and avoid spinning. Unfortunately, most of those OS
 mutexes will be slower and bigger than a spinlock because of
 artificial constraints that arise out of compatibility (a
 pthread_mutex_t is 64 bytes because of binary
 compatibility with programs that were compiled against ancient
 implementations that had to be 64 bytes) or the need to
 support features that you may not need (like recursive locking –
 even if you don’t use it, pthread_mutex_lock() may
 have to at least do a check to see if you asked for it).

 WebKit’s locking infrastructure is most inspired by Linux’s
 excellent futex
 primitive. Futexes empower developers to write their own adaptive
 locks in just a few lines of code (Franke,
 Russell, and Kirkwood ’02). Like with futexes, we materialize
 most of the data for a lock only when that lock experiences
 contention, and we locate that data by hashing the address of the
 lock. Unlike futexes, our implementation does not rely on kernel
 support and so it will work on any OS. The ParkingLot
 API has some functionality that futexes lack, like invoking
 callbacks while holding internal ParkingLot locks.

 The idea of using very few bits per adaptive lock is widespread,
 especially in Java virtual machines. For example, HotSpot
 usually only needs two or three bits for the state of an object’s
 lock. I’ve
 co-authored a paper on locking in another Java VM, which also
 compressed an adaptive lock into a handful of bits. We can trace
 some of the ideas about how to build locks that are small and fast
 to meta-locks (Agesen et al ’99)
 and tasuki locks (Onodera and Kawachiya
 ’99).

 New proposals like
 std::synchronic and hardware
 transactional memory also seek to speed up locking. We will
 show that these techniques don’t exhibit the performance qualities
 that we want for WebKit.

 Despite the basic techniques being well understood in certain
 communities, it’s hard to find a lock implementation for C++ that
 has the qualities we want. Spinlocks are widely available, and
 those are often optimized for using little memory and having great
 fast paths for uncontended lock acquisition and microcontention.
 But spinlocks will waste CPU time when the lock isn’t immediately
 available. OS mutexes know how to suspend threads if the lock is
 not available, so they are more efficient under contention – but
 they usually have a slower uncontended fast path, they don’t
 necessarily have the behavior we want under microcontention, and
 they require more memory. C++ provides access to OS mutexes with
 std::mutex. Prior to WTF::Lock, WebKit
 had a mix of spinlocks and OS mutexes, and we would try to pick
 which one to use based on guesses about whether they would benefit
 more from uncontended speed or efficiency under contention. If we
 needed both of those qualities, we would have no choice but to punt
 on one of them. For example, we had a spinlock in
 CodeBlock that should have been adaptive because
 it protected long critical sections, and we had an OS mutex in our
 parallel GC that accounted for 3% of our time in the Octane Splay
 benchmark because of shortcomings in fast path performance. These
 issues are resolved thanks to WTF::Lock. Also, there
 was no way to have a small lock (1 byte or less) that was also
 efficient under contention, since OS mutexes tend to be large. In
 the most extreme case we will have one lock per JavaScript object,
 so we care about the sizes of our locks.

 Building Locks With ParkingLot

 WTF::ParkingLot is a framework for building
 adaptive locks and other synchronization primitives. Both
 WTF::Lock and WTF::Condition use it for
 parking threads until the lock becomes available or the condition
 is notified. ParkingLot also gives us everything we’ll
 need to implement the synchronization schemes that are coming to
 Web standards like SharedArrayBuffer.

 Adaptive locks need to be able to park and unpark threads. We
 believe that synchronization primitives shouldn’t have to maintain
 their own parking queues, but instead, a single global data
 structure should provide a way to access queues by using the
 address of the lock’s atomic state as a key. The concurrent
 hashtable of queues is called WTF::ParkingLot. Since
 each thread can be queued only once at any given time,
 ParkingLot‘s memory usage is bounded by the number of
 threads. This means that locks don’t have to pay the price for
 space for a queue. This makes a lot of sense since for WebKit,
 which usually runs a small number of threads (about ten on my
 system) but can easily allocate millions of locks (in the worst
 case, one per JavaScript object).

 ParkingLot takes care of queueing and thread
 suspension so that lock algorithms can focus on other things, like
 how long to spin for, what kind of delays to introduce into
 spinning, and which threads to favor when unlocking.

 ParkingLot API

 Parking refers to suspending the thread while
 simultaneously enqueuing it on a queue keyed by some address.
 Unparking refers to dequeuing a thread from a queue keyed
 by some address and resuming it. This kind of API must have a
 mechanism for resolving the suspend-resume race, where if a resume
 operation happens moments before the suspend, then the thread will
 suspend anyway. ParkingLot resolves this by exposing
 the fact that the queues are protected by locks. Parking invokes a
 client callback while the queue lock is held, and gives the client
 a chance to decide whether they want to proceed or not. Unparking
 invokes a client callback while the queue lock is held, and tells
 the client if a thread was dequeued and if there are any more
 threads left on the queue. The client can rely on this additional
 synchronization to ensure that racy deadlocks don’t happen.

 The basic API of ParkingLot comprises
 parkConditionally, unparkOne, and
 unparkAll.

 bool parkConditionally(address, validation, beforeSleep,
 timeout). This takes the const void*
 address and uses it as a key to find, and lock, that
 address’s queue. Calls the bool validation() callback
 (usually a C++ lambda)
 while the lock is held. If the validation returns false, the queue
 is unlocked and parkConditionally() returns false.

 If the validation returns true, the current thread is placed on
 the queue and the queue lock is released. Once the queue lock is
 released, this calls the void beforeSleep() callback.
 This turns out to be useful for some synchronization primitives,
 but most locks will pass an empty thunk. At this point, the thread
 is suspended until some call to unparkOne() dequeues
 this thread and resumes it. The client can supply a timeout using a
 ParkingLot::Clock::time_point
 (ParkingLot::Clock is a typedef for std::chrono::steady_clock).
 The thread will not stay suspended past that time point.

 void unparkOne(address, callback). This takes a
 const void* address and uses it as a key to find, and
 lock, that address’s queue. Then unparkOne tries to
 dequeue one thread. Once it does this, it calls the void
 callback(UnparkResult), passing a struct that reports if a
 thread was dequeued and whether the queue is now empty. Then it
 unlocks the queue lock. If it had dequeued a thread, it signals it
 now.

 void unparkAll(address). Unparks all threads on
 the queue associated with the given address.

 This API gives us everything we need to implement the locking
 primitives we need: WTF::Lock and
 WTF::Condition. It also allows us to build userland
 versions of FUTEX_WAIT/FUTEX_WAKE
 operations, which are required by SharedArrayBuffer
 atomics.

 WTF::Lock

 We have many locks, including locks inside very frequently
 allocated objects like JavaScriptCore’s
 Structure. We want a lock object that takes as
 little memory as possible, so we go to great lengths to make the
 lock fit in one byte. We do many such tricks in
 Structure since there is so much pressure to make that
 object small. We also want the core algorithm to leave open the
 possibility of having the lock embedded in bitfields, though
 Lock doesn’t support this because
 C++ requires objects to be at least one byte. As this section
 will show, ParkingLot makes it so easy to implement
 fast locking algorithms that if clients did need to embed a lock
 into a bitfield, it would be reasonable for them to have their own
 implementation of this algorithm.

 Our goals are to have a lock that:

 	Uses as few bits as possible.

 	Requires only a CAS on the fast path for locking and unlocking
 to maximize uncontended throughput.

 	Is adaptive.

 	Maximizes throughput under contention.

 Making the fast path require only a CAS means that
 WTF::Lock‘s atomic state must be able tell us if there
 are any threads parked. Otherwise, the unlock()
 function would have to always call
 ParkingLot::unparkOne() in case there were threads
 parked. While such an implementation would be functional, it would
 be far from optimal. Afterall, ParkingLot::unparkOne()
 is obligated to do hashing, acquire some queue lock, and call a
 callback. This is a lot more work than we want in the common path
 of unlock().

 This implies having two bits for the atomic state:

 	isLockedBit to indicate if the lock is
 locked.

 	hasParkedBit to indicate if there may be threads
 parked.

 Locking is allowed to proceed any time the
 isLockedBit is clear even if the
 hasParkedBit is set. This property is called
 barging. We will dive into the implications of barging
 later.

 If locking does not succeed, the algorithm chooses between
 trying again and parking the thread. Prior to parking, it sets the
 hasParkedBit. The validation callback it
 passes to parkConditionally checks that the lock still
 has both isLockedBit and hasParkedBit
 set. We don’t want to park if isLockedBit is clear
 since this means that the lock is available. We don’t want to park
 if hasParkedBit is clear since this means that the
 lock has forgotten that we are about to park.

 If the hasParkedBit is clear, then unlocking just
 clears the isLockedBit. If the
 hasParkedBit is set, it calls unparkOne()
 passing a callback that really unlocks the lock. This callback will
 set the lock’s state to either hasParkedBit or
 0, depending on whether the UnparkResult
 reports that there are still more threads on the queue.

 We call this basic algorithm a barging lock, and a
 basic implementation might look like this:

 class BargingLock {
 public:
 BargingLock()
 {
 m_state.store(0);
 }
 void lock()
 {
 for (;;) {
 uint8_t currentState = m_state.load();
 if (!(currentState & isLockedBit)
 && m_state.compareExchangeWeak(currentState,
 currentState | isLockedBit))
 return;
 m_state.compareExchangeWeak(isLockedBit,
 isLockedBit | hasParkedBit);
 ParkingLot::parkConditionally(
 &m_state,
 [this] () -> bool {
 return m_state.load() == isLockedBit | hasParkedBit;
 });
 }
 }
 void unlock()
 {
 if (m_state.compareExchangeWeak(isLockedBit, 0))
 return;
 ParkingLot::unparkOne(
 &m_state,
 [this] (ParkingLot::UnparkResult result) {
 if (result.mayHaveMoreThreads)
 m_state.store(hasParkedBit);
 else
 m_state.store(0);
 });
 }
 private:
 static const uint8_t isLockedBit = 1;
 static const uint8_t hasParkedBit = 2;
 Atomic<uint8_t> m_state;
 };

 WTF::Lock closely follows this algorithm, but has
 additional performance tweaks like spinning and inline fast
 paths.

 Spinning

 Adaptive locks combine parking and spinning. Spinning is great
 because it protects microcontention scenarios from doing parking.
 Microcontention is when a thread fails the fast path lock
 acquisition because the lock is not available right now, but that
 lock will become available in less time than what it would take to
 park and then unpark. Before WTF::Lock::lock() parks a
 thread, it will spin 40 times, calling
 yield between spins. This turns out to be good enough across a
 while range of platforms. The algorithm can be visualized as
 follows:

 if (m_word.compareExchangeWeak(0, isLockedBit))
 return;
 for (unsigned i = 40; i--;) {
 if (m_word.load() & hasParkedBit)
 break;
 if (m_word.compareExchangeWeak(0, isLockedBit))
 return;
 sched_yield();
 }

 This is a known-good approach, which we borrow from JikesRVM’s
 locks. We suspect that this algorithm, including the spin limit
 set at 40, is portable enough for our needs. JikesRVM experiments
 found it to be optimal on a 12-way POWER machine in 1999. I found
 that it was still optimal when I
 tried to optimize those locks further on Intel hardware with
 various CPU and memory topologies. Microbenchmarks that I ran for
 this post confirm that 40 is still optimal, and that there is a
 broad plateau of near-optimal settings between about 10 and 60
 spins.

 Fast Paths

 WTF::Lock is structured around an inline fast path
 for lock() that just does a single lock attempt, and
 an inline fast path for unlock() that unlocks the lock
 if there is nobody parked. Having small inline fast paths means
 that most lock clients will only pay the price of a CAS on locking
 and unlocking.

 Summary of WTF::Lock

 WTF::Lock is a high performance lock that fits in
 one byte. The underlying algorithm only needs two bits, so it would
 be suitable for cramming a lock into a bitfield. See
 wtf/Lock.h and
 wtf/Lock.cpp for the full implementation.

 Barging and Fairness

 WTF::Lock makes a particular choice about how to
 handle unlocking: it clears the isLockedBit, which
 makes the lock available to any thread, not just the one it
 unparks. This implies that the thread that has been waiting for the
 longest may have the lock stolen from it by some other thread,
 which may not have waited at all. A thread that suffers such defeat
 has no choice but to park again, which puts it at the end of the
 queue.

 This shortcoming can be fixed by having unlock()
 unpark a thread without releasing the lock. This kind of protocol
 hands off ownership of the lock from the thread doing the unlocking
 to the thread that had waited the longest. If the lock also lacks
 an adaptive spin loop, then this protocol enforces perfect FIFO
 (first-in, first-out) discipline on threads contending for a lock.
 FIFO is an attractive property, and it ensures that no thread will
 get the lock stolen from it.

 However, allowing barging instead of enforcing FIFO allows for
 much higher throughput when a lock is heavily contended. Heavy
 contention in systems like WebKit that use very fine-grained locks
 implies that multiple threads are repeatedly locking and unlocking
 the same lock. In the worst case, a thread will make very little
 progress between two critical sections protected by the same lock.
 In a barging lock, if a thread unlocks a lock that had threads
 parked then it is still eligible to immediately reacquire it if it
 gets to the next critical section before the unparked thread gets
 scheduled. Barging permits threads engaged in microcontention to
 take turns acquiring the lock many times per turn. On the other
 hand, FIFO locks force contenders to form a convoy where
 they only get to hold the lock once per turn. This makes the
 program run much slower than with a barging lock because of the
 huge number of context switches – one per lock acquisition!

 Futex Algorithms and ParkingLot

 ParkingLot is very similar to futexes.
 Both primitives follow the principle that a lock should not have to
 maintain its own queue. Futexes get help from the kernel and have a
 richer API, which enables some locking protocols that would be
 impossible to implement with ParkingLot, like priority
 inheritance locks. However, ParkingLot is powerful
 enough to support the based
 FUTEX_WAIT/FUTEX_WAKE operations that
 form the core of futexes.

 FUTEX_WAIT can be implemented as follows:

 enum Result {
 TimedOut, TryAgain, Success };
 Result wait(Atomic<int32_t>* futex, int32_t expected,
 Clock::time_point timeout)
 {
 bool comparisonSucceeded = false;
 bool result = ParkingLot::parkConditionally(
 futex,
 [&] () -> bool {
 comparisonSucceeded = futex->load() == expected;
 return comparisonSucceeded;
 },
 [] () { },
 timeout);
 if (result)
 return Success;
 if (comparisonSucceeded)
 return TimedOut;
 return TryAgain;
 }

 ParkingLot abstracts a simple version of this
 behind an API called parkConditionally().

 FUTEX_WAKE that wakes one thread (the common case)
 can be implemented as a call to unparkOne:

 bool wake(Atomic<int32_t>* futex)
 {
 return ParkingLot::unparkOne(futex).didUnparkThread;
 }

 Being able to emulate core futex functionality means that we can
 implement various kind of futex-based lock algorithms. We have done
 this for the purpose of
 benchmarking our lock implementations. Here are some of the
 lock algorithms that we have implemented:

 	
 ThunderLock: simple lock algorithm that unparks
 all threads anytime there had been threads parked. This releases a
 thundering
 herd of threads that all try to grab the lock. All but one will
 have to park again. This algorithm is simpler than
 BargingLock and requires only three states. It’s easy
 to implement this with futexes, which support a variant of
 WAKE that wakes all threads. This is also a great
 algorithm to use if multiple locks share the same address.

 	
 CascadeLock: adaptive lock that is similar to
 glibc‘s
 lowlevellock algorithm used for
 pthread_mutex on Linux. This algorithm unparks at most
 one thread on unlock(). The hard part of an adaptive
 lock that unparks at most one thread is determining when the atomic
 state is allowed to forget that there are threads parked. The
 sooner the atomic state claims there are no thread parked, the
 sooner unlock() calls can take the fast path. But we
 don’t want to forget parked threads too soon, as this could lead to
 deadlock. WTF::Lock solved this problem by using the
 unparkOne() callback, but that’s not available to
 futexes. Instead, CascadeLock solves this problem by
 having any thread that parks acquire the lock in the
 LockedAndParked state. This conservatively ensures
 that we never forget about parked threads. It also means that as
 soon as a thread succeeds in acquiring the lock without parking and
 no other threads are contending, the lock will forget the parked
 state and future unlocks will be fast.

 	
 HandoffLock: This is a strict first-in, first-out
 lock that has unlock() hand off lock ownership to the
 thread it unparks. This lock is more deterministic than the other
 algorithms, but as we will show in our performance evaluation, it’s
 also a lot slower.

 Additionally, we’ve also implemented a version of
 WTF::Lock in this same style so that it’s easy to
 compare to the other algorithms:

 	
 BargingLock: configurable version of
 WTF::Lock. This lock cannot be implemented using
 futexes because it requires a callback in unparkOne(),
 which only ParkingLot provides.

 WTF::Condition

 The park/unpark operations of ParkingLot align
 perfectly with the needs of condition variables.
 WTF::Condition supports lots of condition-variable
 primitives, like various kinds of waiting with a timeout. In this
 section we just consider the three most basic primitives, since the
 other ones are easy to build on top of these: wait,
 notifyOne, and notifyAll.

 The hardest part of a condition variable is that it must appear
 to unlock the lock at the same time that the thread waits on the
 condition. Unlocking the lock and separately waiting on the
 condition would mean that notify operations could
 happen just after unlocking and just before waiting. We address
 this with the beforeSleep callback to
 parkConditionally. This callback runs just after the
 ParkingLot places the calling thread on a parking
 queue, but just before the thread is actually parked. This means
 that as soon as the lock is unlocked, any notify
 operations are guaranteed to release this thread from the condition
 variable.

 This is a simple and precise algorithm, which ensures that
 wait will never return unless the condition was
 notified.

 Interestingly, this algorithm means that
 WTF::Condition doesn’t actually need to place any data
 into its atomic state – it just uses it to access a queue in the
 ParkingLot, which then does all of the work. We
 exploit this to use the contents of the Condition to
 just record whether there are any waiters. We use the various other
 callbacks from ParkingLot to maintain this cache, and
 we use it to make notifyOne/notifyAll
 very fast when there isn’t anyone waiting: they just return without
 calling into ParkingLot.

 The complete algorithm for the fundamental
 Condition operations is:

 class Condition {
 public:
 Condition()
 {
 m_hasWaiters.store(false);
 }
 void wait(Lock& lock)
 {
 ParkingLot::parkConditionally(
 &m_hasWaiters,
 [this] () -> bool {
 m_hasWaiters.store(true);
 return true;
 },
 [this, &lock] () {
 lock.unlock();
 });
 lock.lock();
 }
 void notifyOne()
 {
 if (!m_hasWaiters.load())
 return;
 ParkingLot::unparkOne(
 &m_hasWaiters,
 [this] (ParkingLot::UnparkResult result) {
 m_hasWaiters.store(result.mayHaveMoreThreads);
 });
 }
 void notifyAll()
 {
 if (!m_hasWaiters.load())
 return;
 m_hasWaiters.store(false);
 ParkingLot::unparkAll(&m_hasWaiters);
 }
 private:
 Atomic<bool> m_hasWaiters;
 };

 This case illustrates some differences from futexes. Supporting
 condition variables with futexes requires a bit more magic, since
 we have to unlock the lock before calling FUTEX_WAIT.
 That would allow a notify call to happen in between
 the unlocking and the waiting.

 One way around this is to use the atomic state to indicate if
 there is currently any thread stuck in between unlocking and
 waiting. We would set it to true at the start of wait,
 and set it to false at the start of notify.
 Unfortunately, that would lead to spurious returns from
 wait: anytime a notify operation happens
 just before we get to FUTEX_WAIT, the
 wait will return even if the notify also
 woke up some other thread. This would be a valid implementation of
 wait
 according to pthreads
 and Java, since those allow for spurious wakeups.

 We like that ParkingLot allows us to avoid spurious
 wakeups. When debugging concurrent code, it’s great to be able to
 isolate what happened. Ensuring that wait only returns
 as a result of a notification is a welcome dose of determinism when
 trying to understand the behavior of a concurrent program.

 WTF::Lock and WTF::Condition both take
 just one byte and implement all of the features you’d expect from
 such synchronization primitives. This is possible due to the
 flexibility of the ParkingLot API.
 ParkingLot is also powerful enough to support many
 futex-based algorithms, since
 ParkingLot::compareAndPark/unparkOne are
 intra-process equivalents of
 FUTEX_WAIT/FUTEX_WAKE.

 Implementing WTF::ParkingLot

 WTF::ParkingLot provides the primitives needed to
 build any kind of adaptive lock. ParkingLot is a
 collection of queues of parked threads. Queues are keyed by the
 address of their lock’s atomic state. ParkingLot is
 based on a concurrent hashtable to maximize parallelism – even if
 many threads are experiencing contention and need to do things to
 the queues, those threads will likely get to do their queue
 operations in parallel because the hashtable has no single
 bottleneck.

 We use ParkingLot to save memory in locks. A risk
 with any side-table approach is that we are just shifting space
 consumption from the lock object to the ParkingLot.
 Fortunately, ParkingLot gives us a strong guarantee:
 the size of ParkingLot is bounded by the number of
 threads. It mostly relies on thread-local objects, which it
 allocates on-demand and destroys automatically when threads die. As
 we will show, all of ParkingLot‘s data structures obey
 the rule that their size is asymptotically bounded by the number of
 threads. This means that the number of locks and even the rate at
 which you contend on them has no impact on the hard O(threads)
 space bound of ParkingLot. In exchange for this fixed
 per-thread overhead, ParkingLot enables all of your
 locks to take only one byte each.

 There are three fundamental operations:
 parkConditionally, unparkOne, and
 unparkAll. We’ll describe just the first two in this
 section, since unparkAll is trivial to implement using
 the same logic as unparkOne.

 Concurrent Hashtable of Synchronized Queues

 An easy way to implement ParkingLot is to have a
 single lock that guards a hashtable that maps addresses to queues.
 This would probably work great for programs that weren’t very
 parallel, but that lock will become a bottleneck in programs with
 lots of threads. ParkingLot avoids this bottleneck by
 using a concurrent hashtable.

 The intuition behind concurrent hashtables is that different
 threads are unlikely to interfere with each other because they are
 likely to do accesses using different keys, which hash to different
 buckets. Therefore even concurrent writes are likely to proceed in
 parallel. The most sophisticated concurrent hashtable algorithms
 use lock-free data structures throughout. But a simpler approach is
 to just put a lock around each bucket. This is the approach we take
 in ParkingLot. The algorithm turns out to be fairly
 simple because we do not have to optimize resizing. We can take
 these shortcuts because:

 	There is only one concurrent hashtable. ParkingLot
 is not instantiable. All of its member functions are static. So
 there is only one of these concurrent hashtables in any
 process.

 	Its size is bounded by the number of threads. A thread takes a
 lot of memory already. This means that we don’t have to be worried
 about the space consumption of this hashtable, so long as it’s
 O(threads) and the per-thread overhead is significantly smaller
 than a typical thread stack.

 	We must acquire a lock associated with the queue once we find
 it in the hashtable. This means that it wouldn’t be too beneficial
 to make the hashtable itself lock-free. All users of it will grab a
 lock anyway. This motivates a solution that doesn’t involve a
 lock-free concurrent hashtable – just one that attempts to minimize
 lock contention.

 	Iterating over the whole table is uncommon and not very
 important. This means that iteration, like resizing, can be
 gross.

 Our resizing algorithm will leak the old (smaller) hashtable.
 This is essential for making the algorithm sound. Because there is
 only one ParkingLot and its size is bounded by the
 number of threads, we can compute a hard bound on the amount of
 leaked memory.

 The most important part of our resizing algorithm is that it
 makes resizing an extremely rare event. Resizing the table only
 happens when the following conditions arise:

 	a thread parks itself for the first time.

 	the thread count at that time is greater than one third of the
 hashtable’s size.

 This ensures that resizing occurs only when the high watermark
 of threads increases. When we grow the table, we always make the
 new size be twice what we need. These rules combined ensure that if
 the max number of threads that were active at any time is N then
 the number of resizes we have ever done is at most log(N). Since we
 know that we can implement a very bad resize algorithm, we’ll first
 consider how to make the ParkingLot work in the
 absence of resizing.

 Simplified Algorithm for a Fixed-Size Hashtable

 Let’s assume that the hashtable size is fixed and all threads
 agree on a pointer to the hashtable. This allows us to consider a
 simpler version of the algorithm. We’ll worry about adding resizing
 later.

 The basic algorithm we use is that each hashtable bucket is a
 queue. Each bucket has a lock (specifically, a
 WordLock, described later in this section) to protect
 itself. We use this lock as the queue lock for the purpose
 of the ParkingLot API. The hashtable only supports
 enqueue and dequeue, so collisions are handled by
 simply interleaving the collided queues. For example, if addresses
 0x42 and 0x84 both hash to bucket at index 7, and you perform a
 sequence of enqueue operations like:

 	enqueue(0x42, T1)

 	enqueue(0x42, T2)

 	enqueue(0x84, T3)

 	enqueue(0x84, T4)

 Then the bucket at index 7 will point to a queue that looks
 like:

 head -> {addr=0x42, thr=T1} -> {addr=0x42, thr=T2} -> {addr=0x84, thr=T3} -> {addr=0x84, thr=T4} <- tail

 This design means that enqueuing doesn’t have to worry about
 collisions at all; it just records the actual desired address in
 the queue node (i.e. the ThreadData for the current
 thread). Dequeuing resolves collisions by finding the first element
 in the list, starting at head, that has the address we are
 dequeuing for.

 After enqueuing a thread when parking, ParkingLot
 must suspend it until it is dequeued during unparking.
 ParkingLot uses a thread-local condition variable to
 suspend threads. Only large overheads matter on this code path,
 since its performance is dominated by the work that the OS has to
 do to make the thread not runnable anymore. Hence, it’s fine for
 ParkingLot to bottom out in OS condition variable
 code.

 In this design, ParkingLot::parkConditionally
 proceeds as follows:

 	Hash the provided atomic state address to get the index into
 the hashtable. Better yet, this gives us a pointer to our bucket.
 From here on, we only worry about this bucket.

 	Lock the bucket’s lock.

 	Call the provided validation callback. The bucket’s lock is
 also the queue lock for the client’s atomic state address, so
 calling the validation callback here satisfies the contract of
 parkConditionally. If the validation fails, we release
 the bucket lock and return.

 	If the validation succeeds, we enqueue the current thread by
 appending it to the linked list at the tail. The current thread’s
 ThreadData will contain the address that we are
 parking on.

 	Unlock the bucket’s lock.

 	Call the beforeSleep callback. Doing work at this
 point turns out to be great for condition variables; more on that
 later.

 	Wait on the current thread’s parking condition variable.

 Unparking a thread via ParkingLot::unparkOne
 proceeds as follows:

 	Hash the provided atomic state address to get the bucket
 pointer.

 	Lock the bucket’s lock.

 	Search forward from head to find the first entry in the queue
 that matches our address, and then remove that entry. We may not
 find any such entry. The queue may even be completely empty.

 	Call the provided callback, telling it if we dequeued any
 threads and if the queue has any more elements. Giving this
 information to the client while we hold the bucket’s lock turns out
 to be great for locks; more on that later.

 	Unlock the bucket’s lock.

 	If we had dequeued a thread, tell it that it can wake up now by
 signaling its parking condition.

 The other operations on ParkingLot are simple
 variations on these two. ParkingLot::compareAndPark is
 just a wrapper for parkConditionally, and
 unparkAll is almost like unparkOne except
 that it finds all of the entries matching the address rather than
 just the first one.

 Resizing the Hashtable

 We don’t want to make a guess about how many threads the process
 will have. WebKit contributors sometimes like to add threads, and
 we don’t want to discourage that. Web APIs can cause WebKit to
 start threads, and the number of threads can be controlled by the
 web page. Therefore, we don’t want to get into the business of
 guessing how many threads we will see. This implies that the
 hashtable must be resizable.

 If we lock every bucket in the current hashtable, then we have
 exclusive access to the table and we can do with it as we wish. Any
 other thread wishing to access the table will be stuck trying to
 acquire the lock of some bucket, since the park/unpark operations
 from the previous section all start with locking some bucket’s
 lock. The intuition is that resizing can simply lock all of the old
 table’s buckets and then allocate a new hashtable and copy the old
 one’s contents into it. Then, while still holding the locks of all
 of the buckets, it can repoint the global hashtable pointer to the
 new table. Then we can release the locks on the old table’s
 buckets. This implies another change: the park/unpark algorithms
 will check if the global hashtable pointer is still the same after
 the bucket lock is locked. Without resizing, the park
 implementation might have looked like:

 void ParkingLot::parkConditionally(...)
 {
 Hashtable* hashtable = g_hashtable; Bucket* bucket = hashtable->buckets[hash % hashtable->size];
 bucket->lock.lock();
 }

 Resizing means that any hashtable operation begins like this
 instead:

 void ParkingLot::parkConditionally(...)
 {
 Bucket* bucket;
 for (;;) {
 Hashtable* hashtable = g_hashtable;
 bucket = hashtable->buckets[hash & hashtable->size];
 bucket->lock.lock();
 if (hashtable == g_hashtable)
 break;
 bucket->lock.unlock();
 }
 }

 After resizing, we need to leak the old hashtable. We cannot be
 sure after unlocking all of its buckets how many threads are still
 stuck between having loaded the old hashtable pointer and
 attempting to lock a bucket. Threads may be stuck in between any
 two instructions for an indeterminate amount of time due to OS
 scheduling. Worse, a bucket’s lock may have any number of threads
 waiting on it, so we cannot delete the lock. Rather than try to ask
 the OS about the status of all threads in the system to detect when
 it’s safe to delete the old table, we just leak the old hashtables.
 This is fine because of exponential resizing. Let’s say that the
 hashtable started with a size of 1 and resized up to 64. Then we
 will have allocated hashtables of the following sizes:

 1 + 2 + 4 + 8 + 16 + 32 + 64

 This is a geometric series, which converges to 127 (i.e. 64 * 2
 – 1). In general, the amount of memory we will waste due to leaking
 old tables is proportional to the amount of memory used by the
 current table. Somewhat humorously, the ParkingLot
 will record all “leaked” hashtables in a global vector to ensure
 that leak detector tools don’t bother us about these harmless and
 intentional leaks.

 We optimize this a bit further, by having the buckets be
 separate heap-allocated objects. The hashtable just contains
 pointers to buckets, and we reuse buckets across resizings. This
 means that the only thing that we leak are the bucket pointer
 arrays, which are an order of magnitude smaller than the total size
 of all of the buckets. In our implementation, the leak is bounded
 (total amount of leaked memory is bounded by the amount of memory
 we are using) and very small (it’s bounded by the size of the
 pointer array, which is much smaller than the total amount of
 memory used for buckets, which in turn is bounded by the number of
 threads and is much smaller than the total amount of memory that
 threads use for other things like stacks).

 Summary of WTF::ParkingLot

 To summarize, ParkingLot provides parking queues
 keyed by the memory addresses of locks. The memory usage of
 ParkingLot has nothing to do with the number of locks
 – it’s bounded by the number of threads currently parked (which is
 bounded by the number of threads). Using some simple concurrency
 tricks, ParkingLot is able to provide parallelism when
 different threads are queueing on different addresses. See
 wtf/ParkingLot.h and
 wtf/ParkingLot.cpp for the full
 implementation.

 WTF::WordLock

 WTF::ParkingLot needs a lock implementation for
 protecting buckets. This shouldn’t be a spinlock because we don’t
 put a bound on the amount of code that may execute while the lock
 is held. ParkingLot will use this lock to synchronize
 the validation in parkConditionally() and
 the callback in unparkOne(). Even though
 those callbacks usually do very little work, we don’t want to place
 strict limits on them. We also need the lock to behave well under
 microcontention and to not take too much memory. This means that we
 need something like WTF::Lock.

 Fortunately, it’s possible to implement that algorithm without a
 ParkingLot if we’re willing to use an entire
 pointer-sized word. This is what
 WTF::WordLock gives us. It’s less desirable than
 WTF::Lock, since it requires more memory, but it’s
 standalone so that we can use it for all of the locking needs of
 ParkingLot. A WordLock instance just has
 a Atomic<uintptr_t> inside it. There is no other
 overhead except for some small per-thread data structures that get
 created the first time that a thread contends for a lock and get
 destroyed automatically when the thread dies.

 A lock needs three data structures: the atomic state, a queue of
 threads, and a lock to protect the queue. In our
 BargingLock algorithm, the atomic state comprises a
 bit that tells us if the lock is locked and a bit that tells us the
 queue is non-empty. WordLock adapts this algorithm by
 having the atomic state be a pointer to the head of the queue, with
 the two low-order bits of the pointer stolen to represent whether
 the lock is locked and whether the queue is locked. We interpret
 the atomic state as follows:

 	The lowest bit is the isLockedBit.

 	The second-lowest bit is the
 isQueueLockedBit.

 	The rest of the bits are a pointer to the head of the queue, or
 null if it is empty.

 The queue is represented using ThreadData objects.
 There is one such object per thread. It contains the pointers
 necessary to manage the queue, including a next
 pointer and a tail pointer. We use the convention that
 the head of the queue points to the tail, which obviates the need
 to allocate any other memory for storing a pointer to tail: the
 atomic state just points to head, which gives an O(1) way of
 finding the tail.

 In all other regards, WTF::WordLock follows the
 BargingLock algorithm. Our experiments will show that
 except for space usage, WordLock performs just as well
 as Lock. See
 wtf/WordLock.h and
 wtf/WordLock.cpp for the full implementation.

 Performance

 We replaced all of the locks in WebKit with
 WTF::Lock because it was safer than spinlocks (no
 chance of a thread wasting time in a spin loop) and both faster and
 smaller than OS-provided mutexes. This section shows the
 performance implications of this change, including some exploration
 of locking protocols that WebKit does not use but that we either
 discovered by accident or that we’ve heard of others using.

 This section first shows the performance of
 WTF::Lock when running WebKit benchmarks, and then
 shows some microbenchmark results using a bunch of different lock
 variants.

 WebKit Performance With WTF::Lock

 Prior to WTF::Lock, WebKit used a mix of
 OS-provided mutexes and spinlocks. We would guess how important the
 lock was for fast path performance and space and how long the
 critical section was going to be. We would always use OS-provided
 mutexes for critical sections that we thought might be long. We had
 data that suggested that we had picked incorrectly in at least some
 cases: some of those OS-provided mutexes were slowing us down and
 some of the spinlocks would cause sched_yield to show
 up in time profiles. The difficulty of guessing what kind of lock
 to use motivated us to implement WTF::Lock.

 It’s now difficult to revert this change and return to a world
 where we pick different locks for different critical sections, and
 we suspect that using spinlocks is generally not a good idea. If
 some part of the code unexpectedly takes a long time, for example
 due to swapping, then the last thing we want is for other threads
 to start busy-waiting for the lock. We also knew from experience
 that trying to alleviate that program by making spinlocks sometimes
 sleep would only degrade performance in the common case.

 This section sets out to establish that if you know that you
 need an adaptive lock then WTF::Lock is what you want
 to use. We use three benchmarks: JetStream 1.1, Speedometer 1.0, and
 PLT3 (our internal page load time test). All of these benchmarks
 are run in a Mac Pro with two 2.7 GHz 6-Core Xeon E5 CPUs (with
 hyperthreading, so 24 logical CPUs) and 16 GB RAM running El
 Capitan. The “OS Mutex” results are from replacing
 WTF::Lock with a wrapper for
 pthread_mutex_t. The WTF::Lock results
 are the baseline. These numbers are gathered using WebKit r199680
 with r199690
 backported (since it affected performance on this machine).

 JetStream Performance

 This chart shows the JetStream score for both OS Mutex and
 WTF::Lock. Higher is better.

 JetStream is a JavaScript benchmark that consists of small to
 medium-sized programs that stress various parts of our JavaScript
 engine. WebKit relies on locks heavily when running JavaScript
 programs. In the most extreme case, each object may have its own
 lock and this lock may be acquired on any property access. This is
 necessary to allow our concurrent compiler to inspect the heap.
 Without locks, those accesses would not be safe. These JetStream
 numbers show that it’s important to have fast locks when running
 JavaScript.

 Speedometer Performance

 This chart shows the Speedometer score for both OS Mutex and
 WTF::Lock. Higher is better.

 Speedometer is a JavaScript and DOM benchmark comprised of web
 apps implemented in different web frameworks. It stresses the
 entire engine. We can see that for this realistic test,
 WTF::Lock gives a 5% speed-up.

 PLT3 Performance

 This chart shows PLT3 geometric mean page load times. Lower is
 better.

 PLT3 speeds up by 5% if you switch to WTF::Lock.
 Since PLT3 is not entirely dominated by JavaScript, this suggests
 that there are many other locks in WebKit that benefit from being
 fast.

 Summary of WebKit Lock Performance

 WTF::Lock is always a speed-up over
 pthread_mutex_t. It’s also 64x smaller – it uses only
 one byte while pthread_mutex_t uses 64 bytes. Based on
 this data, we are confident that the right choice is to continue
 using WTF::Lock instead of
 pthread_mutex.

 Microbenchmark Performance

 This section explores the performance of various locks on a
 simple microbenchmark that can start any number of threads which
 repeatedly lock a lock and do some small amount of floating point
 math (each loop iteration does one double addition and
 multiplication). We can vary the locking protocol and some
 parameters of the locking protocol (like the amount of spinning it
 will do before parking). This compares WTF::Lock and
 WTF::WordLock to spinlocks and miscellaneous lock
 algorithms that use ParkingLot. This section also
 compares WTF::Lock to
 std::synchronic and hardware
 transactional memory.

 These benchmarks are run on a MacBook Pro with a 2.6 GHz Intel
 Core i7 with four cores and hyperthreading and 16 GB of RAM running
 El Capitan.

 Microcontention for Various Thread Counts

 This chart shows the number of successful lock acquisitions per
 second across all threads as a function of the number of threads.
 This uses a critical section that does one loop iteration while
 holding the lock. Higher is better.

 We use six locking protocols:

 This chart shows that as you scale up the number of threads,
 WTF::Lock can easily hold its own. It’s hard to tell
 how slow that OS mutex and HandoffLock are. In fact,
 for 10 threads they are about 160x slower.

 Notice that for a single thread, the fastest locks are always
 spinlocks. This is because spinlocks do not have to use CAS when
 unlocking. Using CAS when unlocking is necessary for locks that
 have a queue, since you need to check for parked threads at the
 moment that you unlock. Spinlocks don’t do this, so they can just
 store 0 – or whatever the “I’m not locked” value is – into the
 lock’s atomic state.

 It’s also clear that depending on the number of threads
 contending, different locks have very different performance. It
 appears that WTF::Lock is not so great for two or
 three threads.

 Finally, it’s clear that the x86 pause instruction
 is not useful for our spinlocks.
 Intel shows that it is a speed-up, but we cannot confirm their
 claim.

 Optimizing the Spin Limit of WTF::Lock

 This chart shows the number of successful lock acquisitions per
 second across all threads as a function of the spin limit. Higher
 is better. This test uses 4 threads, since for fewer threads the
 spin limit doesn’t matter much, and for more threads the chart
 doesn’t look much different than this. This uses a critical section
 that does one loop iteration while holding the lock.

 We initially picked a spin limit of 40 based on ancient JikesRVM
 experiments. Surprisingly, this chart precisely confirms that 40 is
 still optimal.

 Microcontention With Different Locks

 This chart shows the number of successful lock acquisitions per
 second across all threads as a function of the number of threads.
 This uses a critical section that does one loop iteration while
 holding the lock. Higher is better.

 This explores three algorithms:

 	
 ThunderLock. This unleashes a thundering herd
 every time it unparks threads.

 	
 CascadeLock. This is based on glibc’s
 lowlevellock algorithm.

 	
 BargingLock. This is like WTF::Lock,
 but more configurable.

 We then run each one in two variants, one that is 8-bit and one
 that is 32-bit.

 This plot shows that CascadeLock and
 ThunderLock exhibit wonderful performance for smaller
 numbers of threads. BargingLock and
 ThunderLock exhibit the best performance for many
 threads. This chart suggests that we might have additional
 performance improvements if we try to take the best of
 ThunderLock and CascadeLock and integrate
 them into the WTF::Lock algorithm. On the other hand,
 this microbenchmark is quite extreme and it doesn’t decisively
 favor any of these algorithms. Because of these results, we have a bug
 open about continuing to reconsider our WTF::Lock
 implementation.

 Contention With Different Critical Section Lengths

 This chart shows the number of successful lock acquisitions per
 second across all threads as a function of the number of loop
 iterations while the critical section is held. Higher is better.
 This uses 4 threads.

 All previous microbenchmark charts used a very short critical
 section. This shows what happens when the critical section length
 is increased. Unsurprisingly, the performance gap between the OS
 mutex and WTF::Lock gets reduced, but even for long
 critical sections (1000 double multiplies and 1000 double adds),
 WTF::Lock is still almost 2x faster.

 Lock Fairness

 One advantage of OS mutexes is that they guarantee fairness: All
 threads waiting for a lock form a queue, and, when the lock is
 released, the thread at the head of the queue acquires it. It’s
 100% deterministic. While this kind of behavior makes mutexes
 easier to reason about, it reduces throughput because it prevents a
 thread from reacquiring a mutex it just released. It’s common for
 WebKit threads to repeatedly acquire the same lock. This section
 attempts to evaluate the relative fairness of OS mutexes and
 WTF::Lock.

 Our
 fairness benchmark starts ten threads while a lock is held. It
 waits a bit after starting them to maximize the likelihood that all
 of those threads pile up on the lock’s queue. Then we release the
 lock, and count how many times each thread got to acquire the lock
 during a 100 millisecond run. A FIFO lock will ensure that each
 thread got to acquire the lock the same number of times except for
 an off-by-one step: whenever the 100 millisecond test run finishes,
 some set of threads may have had a chance to do exactly one more
 lock acquisition because they happened to come first in the
 round-robin cycle.

 The chart above shows the fairness results for the OS Mutex. As
 expected, it’s completely fair.

 WTF::Lock is slightly less fair according to the
 chart above. However, the least lucky WTF::Lock thread
 still got to acquire the lock about 180x more times than any OS
 Mutex thread: thread 8 was the least lucky WTF::Lock
 thread with only 556797 acquisitions, 15% less than the thread 10,
 which was the luckiest. But that’s a huge number of lock
 acquisitions compared to 3010, the best that the OS mutex threads
 could do.

 This is a surprising result. It’s clear that the OS mutex is
 doing exactly what it set out to do: no thread gets to do any more
 work than any other thread. On the other hand,
 WTF::Lock does not guarantee fairness. Analysis of the
 algorithm shows that a thread that has been waiting the longest to
 get the lock may fail to get the lock and be forced to go to the
 end of the queue. But this chart shows that even without having a
 fairness guarantee, the unluckiest thread using
 WTF::Lock got better treatment than any thread using
 the guaranteed-fair mutex. It’s almost as if the OS mutex is not
 actually fair because while thread 1 is served equally to thread 2,
 all 10 threads are underserved relative to a hypothetical thread
 11, which is using a different algorithm. Indeed, we can think of
 thread 11 as being the OS context switch handler.

 Fair algorithms make sense in some contexts, like if all
 critical sections are long and it matters that the longest wait for
 any thread is bounded by the number of threads and the total length
 of their critical sections. But WebKit uses tiny critical sections
 and some of them become contended. The cost of ensuring fairness in
 small critical sections turns out to be too high to be
 practical.

 We have to account for the possibility that the OS mutex is
 slower than WTF::Lock for some reason other than
 fairness. We can test this since we have also implemented
 HandoffLock, which is a completely fair lock
 implemented using ParkingLot.

 The chart above shows the fairness results for
 HandoffLock. It performs almost exactly like the OS
 mutex. This result has some interesting implications. It shows that
 the OS mutex’s performance is likely to be due entirely to its
 deterministic fairness guarantee. It also implies that the extra
 overhead that ParkingLot introduces does not adversely
 affect the speed with which ParkingLot can handoff
 execution from one thread to another.

 Comparison to Other Novel Locks

 The C++ language has a proposed feature called
 std::synchronic that addresses some of the same
 problems as ParkingLot. It allows users to write their
 own locks, and those locks can fit into a small amount of memory.
 Lock algorithms focus a lot on how to handle contention so as to
 optimize throughput even when multiple threads want to hold the
 same lock. An approach for handling contention that is popular in
 scholarly computer science is
 transactional memory. If a transactional critical section is
 contended but the contending threads don’t have any races other
 than the race to get the lock (i.e. they access disjoint memory
 except for the lock itself) then these threads will get to run
 concurrently. If a race is detected, some threads will abort and
 retry, possibly reverting to a convention lock algorithm. Modern
 x86 chips support transactional memory via Hardware Lock
 Elision (HLE). WebKit avoids using a single lock to protect
 unrelated data, since this is both awkward (it’s easiest to put a
 tiny WTF::Lock right next to whatever field it
 protects) and suboptimal (it causes pointless contention). In
 WebKit we add locks in order to protect data races, so transactions
 are unlikely to help. This section evaluates the performance of
 these alternatives, with an emphasis on a WebKit-style critical
 section, where racing on the lock implies a race for the same
 underlying data.

 This chart shows the number of successful lock acquisitions per
 second across all threads as a function of the number of threads.
 This uses a critical section that does one loop iteration while
 holding the lock. Higher is better.

 To test std::synchronic we
 implement a lock that follows the “TTAS lock” algorithm in the
 synchronic
 test suite. To test HLE, we
 implement a basic spinlock wrapped with
 xacquire/xrelease. As this chart
 shows, WTF::Lock is always significantly faster than
 either of these kinds of locks. We suspect that
 std::synchronic performs relatively poorly because it
 requires the analog of ParkingLot::unparkOne() to run
 every time a lock is released, even if nobody is waiting. On the
 other hand, the same features that make
 std::synchronic a bit slower also make its API a lot
 easier to use. We suspect that HLE performs relatively poorly
 because the locks in this benchmark protect a data race. We only
 use locks in WebKit when there is a data race to protect, so
 although this benchmark is unfair to the intended use case of HLE,
 we believe that it’s an appropriate benchmark for simulating how we
 use locks.
 We aren’t the first to observe that transactional memory isn’t
 great. That post observes that one problem with transactional
 memory is the lack of a killer app, and observes that the industry
 as a whole is missing a concurrency killer app. WebKit uses
 concurrency to dramatically speed up JIT compilation and it uses
 parallelism to dramatically speed up garbage collection, and both
 are possible thanks to fast locks.

 Summary

 We replaced all of WebKit’s locks with our own lock
 implementation, called WTF::Lock. We did this because
 we wanted to aggressively reduce the sizes of our locks while
 increasing overall performance. We also wanted the lock to be
 adaptive, so that threads would not spin when a lock was held for a
 long time. The new lock, called WTF::Lock is
 implemented using a reusable abstraction for parking and queuing
 threads, and that abstraction will come in handy when implementing
 new web
 standards.

 OEBPF/images/SkWxezayjZ.png
70000

8-bit BargingLock (like WTF::Lock)

60000 32-bit ThunderLock

8-bit ThunderLock
50000

40000

32-bit BargingLock

30000
20000 8-bit CascadeLock

10000

Thousands Of Lock Acquisitions Per Second

1 2 3 4 5 6 7
Number of Threads

;

32-bit CascadeLock
(ke glibc mutex)

10

OEBPF/images/BkMxxMpksZ.png
10*

5000

1000

500

Thousands Of Lock Acquisitions Per Second

0 200 400 600 800 1000
Loop lterations While Lock Held

OEBPF/images/SkJexMpJoW.png
100000

80000

Spinlock using sched_yield

WTF::WordLock \

60000

40000

20000

Spinlock using x86 pause
-~

<«—— OS mutex or HandoffLock

Thousands Of Lock Acquisitions Per Second

1 2 3 4 5 6 7 8 9 10
Number of Threads

OEBPF/images/BJexgGakjb.png
40000
30000
20000
10000

PU093S Jad suonisiNboy %007 JO spuesnoyL

40 60 80 100

Number of Spins

20

OEBPF/images/B1Kxz6ko-.png

OEBPF/images/SJcef6JiZ.jpg
’\i v

s=tg

OEBPF/images/HJpgMa1s-.png
0S Mutex

WTF::Lock

OEBPF/images/HJCxM6JiW.png
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

OEBPF/images/SyolMp1sW.png

OEBPF/images/HJ2gM6yoZ.png
70.49

187.39
o 20 40 60 80 100 120 140 160 180 200

OEBPF/images/rkQez6Js-.jpg

OEBPF/images/HJMezp1iW.jpg

OEBPF/images/SyBxMpJi-.jpg

OEBPF/images/HkEeGpkiW.jpg

OEBPF/images/ByDgM61j-.gif

OEBPF/images/SkUlfT1j-.jpg

OEBPF/images/r1OlGa1iZ.png

OEBPF/images/cover.png
EpubPress (Beta)

OEBPF/images/SJEelzTyo-.png
PlEEREEEC

PEaIy] Jad SUONISINDOY %007T::4 LM O JaquinN

Thread

OEBPF/images/BJregMp1o-.png
§

§ 88 8 8 8 8

3 & & 2

Pe21YLIad SUONSINDOY YOO OPUEH JO JqUINN

°

Thread

OEBPF/images/H1XgeGTJjZ.png
§

§ 8 8§

PeaIY LI SUONISINDOY Xan

g &
WSO Jo

8

Jaquiny

°

Thread

OEBPF/images/S1gGTJj-.png
SF Home Prices: Median Home Prices
May 2014 - April 2016

Ko 2016
$1.26M - Previous High il
G $1.23M May 2015 N
April 2015

$1.2M
$1.1M
$1M
$900K
$800K
$700K

May ‘14 Aug ‘14 Nov ‘14 Feb'15 May ‘15 Aug ‘15 Nov 15 Feb'16

OPEN LISTINGS + historical data provided by Paragon RE

OEBPF/images/SkbeM6Jj-.png
SF Home Prices: Average price per sqft
April 2015 vs April 2016

April 2015 Al
. ri
- April 2015 April 2016 $1088/sf $,'|°o17 /et
] i i $951/sf
e April 2015 April 2016 $909/sf
¢ $747/sf $763/sf
3
o
Q . .
a
Single-Family Homes under $1M Condos under $1M All Homes & Condos over $1M

OPEN LISTINGS

OEBPF/images/HJLgez6kiW.png
Thousands Of Lock Acquisitions Per Second

60000

50000

40000

30000

20000

10000

WTF::Lock

Spinlock using Intel HLE

TTAS lock using std::synchronic

4 5 6 7 8
Number of Threads

OEBPF/images/rygezTyjb.png
SF Bidding Wars: Sold how much over the asking price?
Single-Family Homes vs Condos - April 2016

o Homes

& +20.5%

o

£

=

<

] Homes

2 +10.1%

< Condos Condos Homes

% +6. 1% +6. 4% +6.8%

g

g Condos

< 2. 7%
Listings under $1M Listings $1M - $3M Listings over $3M

OPEN LISTINGS

